Worker Training Program

The following descriptions of successful applications for current "SBIR E-Learning for HAZMAT and Emergency Response Requests for Applications" were provided by the applicants.

Agile Development of Innovative, Interactive Hazard Recognition and Mitigation Tools/Learning e-Platforms for Workers Involved in Disaster Rescue and Recovery

Application NumberPrincipal InvestigatorCompany
5 R44 ES030580-03McLaughlin, JefferyRadiant Creative Group, LLC 
5 R44 ES030580-03Perkison, William BrettRadiant Creative Group, LLC 

Workers involved in post-flood reconstruction face an increased risk of occupational exposure to respiratory and other safety hazards as well as threats to their personal security (i.e., exploitation, wage theft, and wage discrimination). Post-flood reconstruction is often handled by day laborers who are predominantly non-English speaking and who have limited access to safety training and personal protective equipment. As flooding events increase in frequency and intensity, there is a critical need to develop tools to help these workers mitigate threats to their safety and wellbeing. To address this need, the interdisciplinary team of this Small Business Innovation Research (SBIR) program have been developing and refining Pocket Ark (PA), a comprehensive e-learning platform for workers in post-flood reconstruction. Their goal in Phase II is to develop the next generation of PA’s e-learning platform to disseminate critical information about hazards to workers prior to deploy it to a post-flood worksite. Project aims include updating the PA platform and conducting a high- fidelity simulated disaster response scenario to train 64 workers and evaluate the program’s efficacy. As an outcome, Phase II is expected to yield a production-ready e-learning platform that: 1) delivers quality, audience-appropriate training to workers; 2) disseminates real-time information about potential on-site hazards; 3) improves logistics between workers and coordinating organizations; and 4) provides tools to reduce wage theft and other security risks. The anticipated outcome of PA is significant in that it addresses multiple dimensions of worker safety unique to this worker population.    

Immersive Modular Preparedness Intelligent Tutoring (IMPRINT)

Application NumberPrincipal InvestigatorCompany
5 R44 ES031818-03Dr. E. Vincent Cross IICharles River Analytics, Inc. 
5 R44 ES031818-03Dan Duggan Charles River Analytics, Inc.

Instructors must deliver engaging, realistic, and immersive tabletop simulations at the conclusion of Hazardous Waste Operations and Emergency Response (HAZWOPER) recertification to support Hazardous Material (HAZMAT) worker and first responder safety and adherence to protocol in the field. This exercise often burdens instructors to deliver a paper or PowerPoint simulation that, although based on real events, fails to meaningfully engage or immerse trainees. When trainees fail to engage, they are putting themselves and others at risk by decreasing their ability to adhere to protocol when responding to HAZMAT incidents in the field. Therefore, emergency response training organizations require a cost-effective training solution that increases the realism and authenticity of tabletop simulations to better equip trainees to execute HAZWOPER safely and effectively when they are in the field.

Charles River Analytics, in partnership with The New England Consortium and Lt. Michael Kates of the Boston Fire Department, proposes to develop and evaluate an Immersive Modular Preparedness Intelligent Tutor (IMPRINT). IMPRINT aims to provide a robust, commercial, portable adaptive virtual reality (VR) solution that will be complemented by an intelligent virtual training system and development framework that actively improves trainees' ability to perform HAZWOPER procedures within a range of realistic field scenarios. IMPRINT will be an untethered intelligent tutoring system (ITS) using the Oculus Quest VR headset to provide an immersive, virtual training experience. With IMPRINT, trainees can apply complex, dangerous procedures in a safe, controlled environment through guided and immersive procedure rehearsal. In Phase II, we will produce a system that complements existing training with a production ready VR case study development suite and a library of VR case studies that replace standard paper and PowerPoint scenario-based activities used to prepare trainees for hands-on assessments and their final HAZWOPER qualification test. 

Team-Based Virtual Field Exercises for HAZMAT Training

Application NumberPrincipal InvestigatorCompany
1R43ES035276-01Bandera, CesarCell Podium, LLC

Among the most educationally valuable components of in-person 40-hour HAZMAT courses are team-based field exercises. This capstone activity combines skills and protocols into an experiential exercise in which learners practice different roles (e.g., entry team, decon team, site supervisor) and equipment (e.g., PPE, sensors, communications). Team-based HAZMAT training exercises have been found to yield statistically significant improvements in preparedness when compared to individual non-collaborative training. However, for several reasons, the more frequent 8-hour refresher courses lack team-based field exercises. First, set-up/tear-down time for such an exercise (~1 hour) would consume a significant amount of the 8 hours. Second, in response to pandemic protocols and emerging worker and instructor preferences, training organizations now offer most 8-hour refresher courses virtually in a synchronous online format. Third, HAZMAT video simulators are currently single user games with no interactivity between learners, and require each training organization and learner to install expensive video game software - and sometimes hardware like VR goggles. Instead, instructors use a case study approach whereby certain aspects of a current hazardous waste site are revealed to the students, who then are required to discuss how they would respond. This is far from experiential. The proposed effort develops a web-based teaching tool that brings the pedagogical value of the physical team-based in-person field exercises of 40-hour HAZMAT courses to the virtual 8-hour refresher courses. The proposed experiential worker training tool exploits recent advances in web standards in order to achieve multiple significant innovations. First, it is the first browser-based HAZMAT training tool to provide team-based HAZMAT field exercises. Thus, any person or training organization with a web-enabled device can use the tool, and no installation of hardware or software is required. Second, the training tool is intuitive. Team members in the virtual field exercises communicate via Zoom, which is integrated with the teaching tool. Third, every student experiences her/his individual realistic and immersive 3D view of the common training scenario, including a virtual chemical and radiation exposure sensor. Fourth, as with in-person exercises, the instructor has the ability to dynamically interject events during the exercise, such as change in the intensity of a hazardous spill or on-the-spot questions, to assess students and keep them engaged. This proposal is based on requests from several training and community organizations, including participants of the 2022 Bi-Annual Midwest Consortium Trainer Conference. Cell Podium will work closely with the following five HAZMAT worker training centers to meet their specific requirements and to deploy in their courses several iterations of the prototype teaching tool for evaluation: the Center for Public Health Workforce Development (Rutgers School of Public Health), the Midwest Consortium for Hazardous Waste Worker Training, the Environmental Management Institute (Indiana), the Green Door Initiative (Detroit), and the UCLA Labor Occupational Safety and Health Program. The ultimate goal of the proposed effort is to develop a tool that is adopted by the HAZMAT training community, enriches online training, and improves the preparedness of our HAZMAT workers.