Male Reproduction & RNA Biology Group

Highlighted Publications

  1. Morgan M, Kabayama Y, Much C, Ivanova I, Di Giacomo M, Auchynnikava T, Monahan JM, Vitsios DM, VasiliauskaiteL, Comazzetto S, Rappsilber J, Allshire RC, Porse BT, Enright AJ, O’Carroll D. 2019. A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Research 29(3):221–232. [Abstract Morgan M, Kabayama Y, Much C, Ivanova I, Di Giacomo M, Auchynnikava T, Monahan JM, Vitsios DM, VasiliauskaiteL, Comazzetto S, Rappsilber J, Allshire RC, Porse BT, Enright AJ, O’Carroll D. 2019. A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Research 29(3):221–232.]
  2. Morgan M,* Much C,* DiGiacomo M, Azzi C, Ivanova I, Vitsios DM, Pistolic J, Collier P, Moreira PN, Benes V, Enright AJ, O’Carroll D. 2017. mRNA 3' uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548(7667):347–351. [Abstract Morgan M,* Much C,* DiGiacomo M, Azzi C, Ivanova I, Vitsios DM, Pistolic J, Collier P, Moreira PN, Benes V, Enright AJ, O’Carroll D. 2017. mRNA 3' uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548(7667):347–351.]

    *Equal contribution.

All Publications

  1. Morgan M, Kumar L, Li Y, Baptissart M. 2021. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci. 78(24):8049-8071. [Abstract Morgan M, Kumar L, Li Y, Baptissart M. 2021. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci. 78(24):8049-8071.]
  2. Paris J,* Morgan M,* Campos J,* Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, Vukovic M, Allen L, Sarapuu A, Tavosanis A, Guitart AV, Villacreces A, Much C, Choe J, Azat A, van de Lagemaat LN, Vernimmen D, Nehme A, Mazurier F, Somervaille TCP, Gregory RI, O’Carroll D, Kranc KR. 2019. Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell 25(1):137-148.e6. [Abstract Paris J,* Morgan M,* Campos J,* Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, Vukovic M, Allen L, Sarapuu A, Tavosanis A, Guitart AV, Villacreces A, Much C, Choe J, Azat A, van de Lagemaat LN, Vernimmen D, Nehme A, Mazurier F, Somervaille TCP, Gregory RI, O’Carroll D, Kranc KR. 2019. Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell 25(1):137-148.e6.]
  3. Le Pen J, Jiang H, Di Domenico T, Kneuss E, Kosałka J, Leung C, Morgan M, Much C, Rudolph KLM, Enright AJ, O’Carroll D, Wang D, Miska EA. 2018. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nature Structural & Molecular Biology 25(9): 778–786. [Abstract Le Pen J, Jiang H, Di Domenico T, Kneuss E, Kosałka J, Leung C, Morgan M, Much C, Rudolph KLM, Enright AJ, O’Carroll D, Wang D, Miska EA. 2018. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nature Structural & Molecular Biology 25(9): 778–786.]
  4. Carrieri C, Comazzetto S, Grover A, Morgan M, Buness A, Nerlov C, O’Carroll D. 2017. A transit-amplifying population underpins the efficient regenerative capacity of the testis. Journal of Experimental Medicine 214(6):1631-1641. [Abstract Carrieri C, Comazzetto S, Grover A, Morgan M, Buness A, Nerlov C, O’Carroll D. 2017. A transit-amplifying population underpins the efficient regenerative capacity of the testis. Journal of Experimental Medicine 214(6):1631-1641.]
  5. Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O’Carroll D. 2017. The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Molecular Cell 67(6):1059–1067.e4. [Abstract Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O’Carroll D. 2017. The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Molecular Cell 67(6):1059–1067.e4.]
  6. Guitart AV, Panagopoulou TI, Villacreces A, Vukovic M, Sepulveda C, Allen L, Carter RN, van de Lagemaat LN, Morgan M, Giles P, Sas Z, Gonzalez MV, Lawson H, Paris J, Edwards-Hicks J, Schaak K, Subramani C, Gezer D, Armesilla-Diaz A, Wills J, Easterbrook A, Coman D, So CW, O’Carroll D, Vernimmen D, Rodrigues NP, Pollard PJ, Morton NM, Finch A, Kranc KR. 2017. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. The Journal of Experimental Medicine 214(3):719-735. [Abstract Guitart AV, Panagopoulou TI, Villacreces A, Vukovic M, Sepulveda C, Allen L, Carter RN, van de Lagemaat LN, Morgan M, Giles P, Sas Z, Gonzalez MV, Lawson H, Paris J, Edwards-Hicks J, Schaak K, Subramani C, Gezer D, Armesilla-Diaz A, Wills J, Easterbrook A, Coman D, So CW, O’Carroll D, Vernimmen D, Rodrigues NP, Pollard PJ, Morton NM, Finch A, Kranc KR. 2017. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. The Journal of Experimental Medicine 214(3):719-735.]
  7. Kozlowski E, Wasserman GA, Morgan M, O’Carroll D, Ramirez NGP, Gummuluru S, Rah JY, Gower AC, Ieong M, Quinton LJ, Mizgerd JP, Jones MR. 2017. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS One 12(6):e0179797. [Abstract Kozlowski E, Wasserman GA, Morgan M, O’Carroll D, Ramirez NGP, Gummuluru S, Rah JY, Gower AC, Ieong M, Quinton LJ, Mizgerd JP, Jones MR. 2017. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS One 12(6):e0179797.]
  8. Comazzetto S, Di Giacomo M, Rasmussen KD, Much C, Azzi C, Morgan M, O’Carroll D. 2014. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genetics 10(10):e1004597. [Abstract Comazzetto S, Di Giacomo M, Rasmussen KD, Much C, Azzi C, Morgan M, O’Carroll D. 2014. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genetics 10(10):e1004597.]
  9. Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, Vasiliauskaite L, Benes V, Enright AJ, O’Carroll D. 2013. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during sdult spermatogenesis. Molecular Cell 50(4):601-608. [Abstract Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, Vasiliauskaite L, Benes V, Enright AJ, O’Carroll D. 2013. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during sdult spermatogenesis. Molecular Cell 50(4):601-608.]
  10. Morgan M, Iaconcig A, Muro AF. 2012. Identification of 3' gene ends using transcriptional and genomic conservation across vertebrates. BMC Genomics 13(1):708. [Abstract Morgan M, Iaconcig A, Muro AF. 2012. Identification of 3' gene ends using transcriptional and genomic conservation across vertebrates. BMC Genomics 13(1):708.]
  11. Morgan M, Iaconcig A, Muro AF. 2010. CPEB2, CPEB3 and CPEB4 are coordinately regulated by miRNAs recognizing conserved binding sites in paralog positions of their 3'-UTRs. Nucleic Acids Research 38(21):7698–7710. [Abstract Morgan M, Iaconcig A, Muro AF. 2010. CPEB2, CPEB3 and CPEB4 are coordinately regulated by miRNAs recognizing conserved binding sites in paralog positions of their 3'-UTRs. Nucleic Acids Research 38(21):7698–7710.]
  12. Roberti MJ, Morgan M, Menendez G, Pietrasanta LI, Jovin TM, Jares-Erijman EA. 2009. Quantum dots as ultrasensitive nanoactuators and sensors of amyloid aggregation in live cells. Journal of the American Chemical Society 131(23):8102–8107. [Abstract Roberti MJ, Morgan M, Menendez G, Pietrasanta LI, Jovin TM, Jares-Erijman EA. 2009. Quantum dots as ultrasensitive nanoactuators and sensors of amyloid aggregation in live cells. Journal of the American Chemical Society 131(23):8102–8107.]
  13. Morgan M. 2008. Models for the recent evolution of protocadherin gene clusters. Biocell 32(1):9–26. [Abstract Morgan M. 2008. Models for the recent evolution of protocadherin gene clusters. Biocell 32(1):9–26.]