Skip Navigation

Your Environment. Your Health.

Selected Publications

Mechanisms of Genome Dynamics Group

  1. Burk RD, 95 authors, Gordenin DA, Chan K, Roberts SR, Klimczak LJ, 145 authors, Mutch D. Integrated genomic and molecular characterization of cervical cancer. Nature 2017 ():-. [Abstract]
  2. Saini N, Roberts SA, Klimczak LJ, Chan K, Grimm SA, Dai S, Fargo DC, Boyer JC, Kaufmann WK, Taylor JA, Lee E, Cortes-Ciriano I, Park PJ, Schurman SH, Malc EP, Mieczkowski PA, Gordenin DA. The impact of environmental and endogenous damage on somatic mutation load in human skin fibroblasts. PLoS genetics 2016 12(10):-. [Abstract]
  3. Kazanov MD, Roberts SA, Polak P, Stamatoyannopoulos J, Klimczak LJ, Gordenin DA, Sunyaev SR. APOBEC-Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active Chromatin Regions. Cell reports 2015 13(6):1103-1109. [Abstract]
  4. Chan K, Gordenin DA. Clusters of Multiple Mutations: Incidence and Molecular Mechanisms. Annual review of genetics 2015 49():243-267. [Abstract]
  5. Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP, Kim J, Kwiatkowski DJ, Fargo DC, Mieczkowski PA, Getz G, Gordenin DA. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015 Sep;47(9):1067-72. doi: 10.1038/ng.3378. Epub 2015 Aug 10. PubMed PMID: 26258849.
  6. Davis C, 112 authors, Gordenin DA, Fargo D, Klimczak LJ, Roberts SA, 102 authors, Creighton C. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer cell 2014 26(3):319-330. [Abstract]
  7. Roberts SA, Gordenin DA. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. BioEssays: news and reviews in molecular, cellular and developmental biology 2014 ():-.
  8. Lujan SA, Clausen AR, Clark AB, MacAlpine HK, MacAlpine DM, Malc EP, Mieczkowski PA, Burkholder AB, Fargo DC, Gordenin DA, Kunkel TA. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome research 2014 24(11):1751-1764. [Abstract]
  9. Roberts, SA and DA Gordenin. Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 2014 14(12): 786-800. [Abstract]
  10. Sakofsky CJ, Roberts SA, Malc E, Mieczkowski PA, Resnick MA, Gordenin DA, Malkova A. Break-induced replication is a source of mutation clusters underlying kataegis. Cell reports 2014 7(5):1640-1648. [Abstract]
  11. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014 507(7492):315-322. [Abstract]
  12. Chan K, Resnick MA, Gordenin DA. The choice of nucleotide inserted opposite random abasic sites formed within chromosomal DNA is indicative of the polymerases participating in translesion DNA synthesis. DNA repair 2013 12(11):878-889. [Abstract]
  13. Roberts, SA, Lawrence, MS, Klimczak, LJ, Frage, D, Stojanov, P, Kiezun, A, Kryukov, GV, Carter, SL, Saksena, G, Harris, S, Shah, R, Resnick, MA, Getz, G, Gordenin, DA.  An apobec cytidine deaminase mutagenesis pattern is ubiquitous in human cancers.  Nature Genetics 45: 970-976, 2013. [Abstract]
  14. Chan K, Sterling JF, Roberts SA, Bhagwat AS, Resnick MA, Gordenin DA. 2012. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent. PLoS genetics 8(12):e1003149. [Abstract]
  15. Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA, Resnick MA, Gordenin DA. 2012.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 46(4):424-435. [Abstract]
  16. Burch LH, Yang Y, Sterling JF, Roberts S, Chao FG, Xu H, Zhang L, Walsh J, Resnick MA, Mieczkowski PA, Gordenin DA. 2011. Damage-Induced Localized Hypermutability. Cell Cycle (Georgetown, Tex.) 10(7): 1073-1085. [Abstract]
  17. Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA. 2008. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4(11): e1000264. [Abstract]
  18. Ma W, Resnick MA, Gordenin DA. 2008. Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis. Nucleic Acid Res 36(6): 1836-1846. [Abstract]
  19. Jin YH, Garg P, Stith CM, Al-Refai H, Sterling JF, Murray LJ, Kunkel TA, Resnick MA, Burgers PM, Gordenin DA. 2005. The multiple biological roles of the 3'-->5' exonuclease of Saccharomyces cerevisiae DNA polymerase delta require switching between the polymerase and exonuclease domains. Mol Cell Biol 25(1): 461-471. [Abstract]

Pubmed links