Close the left navigation

Biostatistics & Computational Biology Branch

Research Summary

Shanshan Zhao, Ph.D., joined the NIEHS Biostatistics and Computational Biology Branch as a principal investigator in January 2015. She holds a secondary appointment in the NIEHS Epidemiology Branch, and an adjunct assistant professorship at the Department of Biostatistics, University of North Carolina at Chapel Hill. Her main research interest is in developing statistical methods for disease risk assessment and risk prediction. Her research areas include statistical methods for survival data analysis, mediation analysis and risk modeling, and their applications to cancer epidemiology and environmental mixture research.

Zhao develops statistical methods for survival data analysis. She developed nonparametric and semiparametric methods to simultaneously analyze multiple time-to-event outcomes, to facilitate risk assessment of multiple diseases across individual’s lifespan. These methods allow one to borrow information on related disease to fill in information about the main study outcome on censored participants, and to characterize the dependency between diseases through risk factors. She has also developed methods to handle issues with mediation analysis of survival outcomes, such as when the mediator is measured with error, or when there are multiple mediators.

A lot of Zhao’s research are motivated by cancer research, based on the NIEHS Sister Study, which enrolled over 50,000 women with at least one sister with breast cancer. Zhao recently developed a continuous family history score, which takes family size, current or diagnosis ages of each family member and other family characteristics into account. Her group also developed tools to characterize the spatial and temporal distribution of breast cancer incidence and mortality, in order to identify important environmental risk factors for breast cancer.

Zhao is also actively involved in environmental mixture research. Her group developed methods to recover the true effects of chemicals when the assays are subject to limit-of-detection. She is also interested in classification methods for the highly-correlated longitudinal chemical compound measurements.

Zhao and her group believe that with powerful statistical tools, the current population-based data have the power to assess disease risks in the population and to provide personalized risk prediction.

Software

  • mhazard
    A R package for multivariate survival function estimation and regression
  • LAmortBrCaShiny
    R Shiny App for an application of the AFT survival model to SEER breast cancer data in Louisiana
  • Semi-mLOD
    R code for handling a generalized linear model with multiple covariates subject to limit-of-detection through semiparametric AFT models of the true covariate values.
  • STAFT
    BUGS code for a spatio-temporal accelerated failure time model. Some of these models include an automation step as part of the temporal fitting component.

Selected Publications

  1. Prentice R., Zhao S. (2020). Regression Models and Multivariate Life Tables. Journal of American Statistical Association. PMID: 31128619; PMCID: PMC Journal – In Process; DOI 10.1080/01621459.2020.1713792. 
  2. Keil A.P., Buckley J.P., O'Brien K.M., Ferguson K.K, Zhao S., White A.J. (2020). A Quantile-Based G Computation Approach to Addressing the Effects of Exposure Mixtures. Environmental Health Perspectives, 128(4): 047004. PMID: 32255670; PMCID: PMC7228100; DOI: 10.1289/EHP5838. [Abstract Keil A.P., Buckley J.P., O'Brien K.M., Ferguson K.K, Zhao S., White A.J. (2020). A Quantile-Based G Computation Approach to Addressing the Effects of Exposure Mixtures. Environmental Health Perspectives, 128(4): 047004. PMID: 32255670; PMCID: PMC7228100; DOI: 10.1289/EHP5838.] 
  3. Wang M., Wasserman E, Geyer N., Carroll R., Zhao S., Zhang L., Hohl R., Lengerich E.J., McDonald A.C. (2020). Spatial Patterns in Prostate Cancer-Specific Mortality in Pennsylvania using Pennsylvania Cancer Registry Data, 2004-2014. BMC Cancer. PMID: 32375682; PMCID: PMC7203834; DOI: 10.1186/s12885-020-06902-5. [Abstract Wang M., Wasserman E, Geyer N., Carroll R., Zhao S., Zhang L., Hohl R., Lengerich E.J., McDonald A.C. (2020). Spatial Patterns in Prostate Cancer-Specific Mortality in Pennsylvania using Pennsylvania Cancer Registry Data, 2004-2014. BMC Cancer. PMID: 32375682; PMCID: PMC7203834; DOI: 10.1186/s12885-020-06902-5.] 
  4. Goldberg M, D'Aloisio AA, O'Brien KM, Zhao S, Sandler DP. 2020. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res; doi: 10.1186/s13058-020-01326-2 [Online 27 October 2020]. [Abstract Goldberg M, D'Aloisio AA, O'Brien KM, Zhao S, Sandler DP. 2020. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res; doi: 10.1186/s13058-020-01326-2 [Online 27 October 2020].]
  5. Prentice RL, Aragaki AK, Chlebowski RT, Zhao S, Anderson GL, Rossouw JE, Wallace R, Banack H, Shadyab AH, Qi L, Snively BM, Gass M, Manson JAE. 2020. Intention-To-Treat Analyses in the Women's Health Initiative Randomized Controlled Hormone Therapy Trials'. Am J Epidemiol; doi: 10.1093/aje/kwaa032 [Online 21 April 2020]. [Abstract Prentice RL, Aragaki AK, Chlebowski RT, Zhao S, Anderson GL, Rossouw JE, Wallace R, Banack H, Shadyab AH, Qi L, Snively BM, Gass M, Manson JAE. 2020. Intention-To-Treat Analyses in the Women's Health Initiative Randomized Controlled Hormone Therapy Trials'. Am J Epidemiol; doi: 10.1093/aje/kwaa032 [Online 21 April 2020].]
  6. Prentice R.L., Zhao S. (2019). The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach. Chapman & Hall/CRC Press. 
  7. Carroll R., Lawson A.B., Zhao S. (2019). A data-driven approach for estimating the change-points and impact of major events on disease risk. Spat Spatiotemporal Epidemiol 29:111-118. [Abstract Carroll R., Lawson A.B., Zhao S. (2019). A data-driven approach for estimating the change-points and impact of major events on disease risk. Spat Spatiotemporal Epidemiol 29:111-118.] 
  8. Carroll R, Zhao S. 2019. Trends in Colorectal Cancer Incidence and Survival in Iowa SEER Data: The Timing of It All. Clin Colorectal Cancer 18(2):e261-e274. [Abstract Carroll R, Zhao S. 2019. Trends in Colorectal Cancer Incidence and Survival in Iowa SEER Data: The Timing of It All. Clin Colorectal Cancer 18(2):e261-e274.] 
  9. Jiang Y., Weinberg C.R., Sandler D.P., Zhao S. (2019). Use of Detailed Family History Data to Improve Risk Prediction, with Application to Breast Cancer. PLOS One. PMID: 31846476; PMCID: PMC6917296; DOI: 10.1371/journal.pone.0226407. [Abstract Jiang Y., Weinberg C.R., Sandler D.P., Zhao S. (2019). Use of Detailed Family History Data to Improve Risk Prediction, with Application to Breast Cancer. PLOS One. PMID: 31846476; PMCID: PMC6917296; DOI: 10.1371/journal.pone.0226407.] 
  10. Cheng A., Zhao S., FitzGerald L.M., Wright J.L., Kolb S., Karnes R.J., Jenkins R.B., Davicioni E., Ostrander E.A., Feng Z., Fan J-B., Dai J.Y., Stanford J.L. (2019). A Four-Gene Transcript Score to Predict Metastatic-Lethal Progression in Men Treated for Localized Prostate Cancer: Development and Validation Studies. Prostate, 79 (14): 1589-1596. PMID: 31376183; PMCID: PMC6715522; DOI: 10.1002/pros.23882. [Abstract Cheng A., Zhao S., FitzGerald L.M., Wright J.L., Kolb S., Karnes R.J., Jenkins R.B., Davicioni E., Ostrander E.A., Feng Z., Fan J-B., Dai J.Y., Stanford J.L. (2019). A Four-Gene Transcript Score to Predict Metastatic-Lethal Progression in Men Treated for Localized Prostate Cancer: Development and Validation Studies. Prostate, 79 (14): 1589-1596. PMID: 31376183; PMCID: PMC6715522; DOI: 10.1002/pros.23882.] 
  11. Carroll R., White A.J., Keil A.P., Meeker J.D., McElrath T.F., Zhao S., Ferguson K.K. (2019). Latent Classes for Chemical Mixtures Analyses in Epidemiology: An Example Using Phthalate and Phenol Exposure Biomarkers in Pregnant Women. Journal of Exposure Science & Environmental Epidemiology. PMID: 31636370; PMCID: PMC6917962; DOI: 10.1038/s41370-019-0181-y. [Abstract Carroll R., White A.J., Keil A.P., Meeker J.D., McElrath T.F., Zhao S., Ferguson K.K. (2019). Latent Classes for Chemical Mixtures Analyses in Epidemiology: An Example Using Phthalate and Phenol Exposure Biomarkers in Pregnant Women. Journal of Exposure Science & Environmental Epidemiology. PMID: 31636370; PMCID: PMC6917962; DOI: 10.1038/s41370-019-0181-y.] 
  12. White A.J., Keller J.P., Zhao S., Carroll R., Kaufman J.D., Sandler D.P. (2019). Air Pollution, Clustering of Particulate Matter Components, and Breast Cancer in the Sister Study: A U.S.-Wide Cohort. Environmental Health Perspectives. PMID: 31596602; PMCID: PMCID: PMC6867190; DOI: 10.1289/EHP5131. [Abstract White A.J., Keller J.P., Zhao S., Carroll R., Kaufman J.D., Sandler D.P. (2019). Air Pollution, Clustering of Particulate Matter Components, and Breast Cancer in the Sister Study: A U.S.-Wide Cohort. Environmental Health Perspectives. PMID: 31596602; PMCID: PMCID: PMC6867190; DOI: 10.1289/EHP5131.] 
  13. Niehoff N.M., Nichols H.B., Zhao S., White A.J., Sandler D.P. (2019). Adult Physical Activity and Breast Cancer Risk in Women with a Family History of Breast Cancer. Cancer Epidemiology, Biomarkers & Prevention, 28 (1): 51-58. PMID: 30333218; PMCID: PMC6325010; DOI: 10.1158/1055-9965.EPI-18-0674. [Abstract Niehoff N.M., Nichols H.B., Zhao S., White A.J., Sandler D.P. (2019). Adult Physical Activity and Breast Cancer Risk in Women with a Family History of Breast Cancer. Cancer Epidemiology, Biomarkers & Prevention, 28 (1): 51-58. PMID: 30333218; PMCID: PMC6325010; DOI: 10.1158/1055-9965.EPI-18-0674.] 
  14. Kupers L.K., Monnereau C., Sharp G.C., [multiple contributing authors including Zhao S.], Relton C.L., Snieder H., Felix J.F. (2019). Meta-Analysis of Epigenome-Wide Association Studies in Neonates Reveals Widespread Differential Methylation Associated with Birthweight. Nature Communication, 19 (1): 1893. PMID: 31015461; PMCID: PMC6478731; DOI: 10.1038/s41467-019-09671-3. [Abstract Kupers L.K., Monnereau C., Sharp G.C., [multiple contributing authors including Zhao S.], Relton C.L., Snieder H., Felix J.F. (2019). Meta-Analysis of Epigenome-Wide Association Studies in Neonates Reveals Widespread Differential Methylation Associated with Birthweight. Nature Communication, 19 (1): 1893. PMID: 31015461; PMCID: PMC6478731; DOI: 10.1038/s41467-019-09671-3.] 
  15. Sikdar S., Joehanes R., Joubert B.R., [multiple contributing authors including Zhao S.], Bustamante M., Levy D., London S.J. (2019). Comparison of Smoking-Related DNA Methylation Between Newborns from Prenatal Exposure and Adults from Personal Smoking. Epigenomics, 11 (13): 1487-1500. PMID: 31536415; PMCID: PMC6836223; DOI: 10.2217/epi-2019-0066. [Abstract Sikdar S., Joehanes R., Joubert B.R., [multiple contributing authors including Zhao S.], Bustamante M., Levy D., London S.J. (2019). Comparison of Smoking-Related DNA Methylation Between Newborns from Prenatal Exposure and Adults from Personal Smoking. Epigenomics, 11 (13): 1487-1500. PMID: 31536415; PMCID: PMC6836223; DOI: 10.2217/epi-2019-0066.] 
  16. Kazmi N., Sharp G.C., Reese S.E., [multiple contributing authors including Zhao S.], Gaunt T.R., Lawlor D.A., Relton C.L. (2019). Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns: Findings from the Pregnancy and Childhood Epigenetics Consortium. Hypertension, 74 (2): 375-383. PMID: 31230546; PMCID: PMC6635125; DOI: 10.1161/HYPERTENSIONAHA.119.12634. [Abstract Kazmi N., Sharp G.C., Reese S.E., [multiple contributing authors including Zhao S.], Gaunt T.R., Lawlor D.A., Relton C.L. (2019). Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns: Findings from the Pregnancy and Childhood Epigenetics Consortium. Hypertension, 74 (2): 375-383. PMID: 31230546; PMCID: PMC6635125; DOI: 10.1161/HYPERTENSIONAHA.119.12634.] 
  17. Reese S.E., Xu C.J., den Dekker H.T., [multiple contributing authors including Zhao S.], Duijts L., Koppelman G.H., London S.J. (2019). Epigenome-Wide Meta-Analysis of DNA Methylation and Childhood Asthma. Journal of Allergy and Clinical Immunology, 143 (6): 2062-2074. PMID: 30579849; PMCID: PMC6556405; DOI: 10.1016/j.jaci.2018.11.043. [Abstract Reese S.E., Xu C.J., den Dekker H.T., [multiple contributing authors including Zhao S.], Duijts L., Koppelman G.H., London S.J. (2019). Epigenome-Wide Meta-Analysis of DNA Methylation and Childhood Asthma. Journal of Allergy and Clinical Immunology, 143 (6): 2062-2074. PMID: 30579849; PMCID: PMC6556405; DOI: 10.1016/j.jaci.2018.11.043.] 
  18. Rubicz R, Zhao S, Geybels M, Wright JL, Kolb S, Klotzle B, Bibikova M, Troyer D, Lance R, Ostrander EA, Feng Z, Fan JB, Stanford JL. (2019). DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics. 111(1):10-16. [Abstract Rubicz R, Zhao S, Geybels M, Wright JL, Kolb S, Klotzle B, Bibikova M, Troyer D, Lance R, Ostrander EA, Feng Z, Fan JB, Stanford JL. (2019). DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics. 111(1):10-16.]
  19. Zhao S., Leonardson A., Geybels M., McDaniel A., Yu M., Kolb S., Zong H., Carter K., Siddiqui J., Cheng, A., Wright J.L., Pritchard C.C., Lance R., Troyer D., Fan J., Ostrander E.A., Dai J., Tomlins S., Feng Z., Stanford J.L. (2018). A Five-CpG DNA Methylation Score to Predict Metastatic-Lethal Outcomes in Men Treated with Radical Prostatectomy for Localized Prostate Cancer. Prostate. PMID: 29956356; PMCID: PMC6120526; DOI: 10/1002/pros.23667. [Abstract Zhao S., Leonardson A., Geybels M., McDaniel A., Yu M., Kolb S., Zong H., Carter K., Siddiqui J., Cheng, A., Wright J.L., Pritchard C.C., Lance R., Troyer D., Fan J., Ostrander E.A., Dai J., Tomlins S., Feng Z., Stanford J.L. (2018). A Five-CpG DNA Methylation Score to Predict Metastatic-Lethal Outcomes in Men Treated with Radical Prostatectomy for Localized Prostate Cancer. Prostate. PMID: 29956356; PMCID: PMC6120526; DOI: 10/1002/pros.23667.] 
  20. Prentice R.L., Zhao S. (2018). Nonparametric Estimation of the Multivariate Survivor Function: The Multivariate Kaplan-Meier Estimator. Lifetime Data Analysis, 24 (1): 3-27. PMID: 27677472; PMCID: PMC5373162; DOI: 10.1007/s10985-016-93830y. [Abstract Prentice R.L., Zhao S. (2018). Nonparametric Estimation of the Multivariate Survivor Function: The Multivariate Kaplan-Meier Estimator. Lifetime Data Analysis, 24 (1): 3-27. PMID: 27677472; PMCID: PMC5373162; DOI: 10.1007/s10985-016-93830y.] 
  21. Carroll R., Lawson A.B., Zhao S. (2018). Temporally dependent accelerated failure time model for capturing the impact of events that alter survival in disease mapping. Biostatistics. PMID: 29939209; PMCID: PMC Journal - In Process; DOI:10.1093/biostatistics/kxy023. [Abstract Carroll R., Lawson A.B., Zhao S. (2018). Temporally dependent accelerated failure time model for capturing the impact of events that alter survival in disease mapping. Biostatistics. PMID: 29939209; PMCID: PMC Journal - In Process; DOI:10.1093/biostatistics/kxy023.] 
  22. Carroll R, Zhao S. 2018. Gaining relevance from the random: Interpreting observed spatial heterogeneity. Spat Spatiotemporal Epidemiol 25:11-17. [Abstract Carroll R, Zhao S. 2018. Gaining relevance from the random: Interpreting observed spatial heterogeneity. Spat Spatiotemporal Epidemiol 25:11-17.] 
  23. FitzGerald L.M., Zhao S., Leonardson A., Geybels M., Kolb S., Lin D.W., Wright J., Eeles R., Kote-Jarai Z., Giles G.G., Southey M.C., Schleutker J., Tammela T.L., Sipeky C., Penney K.L., Stampfer M.J., Gronberg H., Wiklund F., Stattin P., Hugosson J., Karyadi D.M., Ostrander E.A., Feng Z., Stanford J.L. (2018). Germline Variants in IL4 and MGMT are Associated with Prostate Cancer-Specific Mortality: An Analysis of 12,082 Prostate Cancer Cases. Prostate Cancer and Prostatic Diseases. 21 (2): 228-237. PMID: 29298992; PMCID: PMC6026113; DOI: 10.1038/s41391-017-0029-2. [Abstract FitzGerald L.M., Zhao S., Leonardson A., Geybels M., Kolb S., Lin D.W., Wright J., Eeles R., Kote-Jarai Z., Giles G.G., Southey M.C., Schleutker J., Tammela T.L., Sipeky C., Penney K.L., Stampfer M.J., Gronberg H., Wiklund F., Stattin P., Hugosson J., Karyadi D.M., Ostrander E.A., Feng Z., Stanford J.L. (2018). Germline Variants in IL4 and MGMT are Associated with Prostate Cancer-Specific Mortality: An Analysis of 12,082 Prostate Cancer Cases. Prostate Cancer and Prostatic Diseases. 21 (2): 228-237. PMID: 29298992; PMCID: PMC6026113; DOI: 10.1038/s41391-017-0029-2.] 
  24. Nethery R.C., Sandler D.P., Zhao S., Engal L.S., Kwok, R.K. (2018). A Joint Spatial Factor Analysis Model to Accommodate Data from Misaligned Areal Units with Application to Louisiana Social Vulnerability. Biostatistics. PMID: 29659722; PMCID: PMC Journal - In Process; DOI: 10.1093/biostatistics/kxy016. [Abstract Nethery R.C., Sandler D.P., Zhao S., Engal L.S., Kwok, R.K. (2018). A Joint Spatial Factor Analysis Model to Accommodate Data from Misaligned Areal Units with Application to Louisiana Social Vulnerability. Biostatistics. PMID: 29659722; PMCID: PMC Journal - In Process; DOI: 10.1093/biostatistics/kxy016.] 
  25. Kim S.S., Meeker J.D., Carroll R., Zhao S., Mourgas M.J., Richards M.J., Aung M., Cantonwine D.E., McElrath T.F., Ferguson K.K. (2018). Urinary trace metals individually and in mixtures in association with preterm birth. Environmental International, 121: 582-590. PMID: 30300816; PMCID: PMC6233299; DOI: 10.1016/j.envint.2018.09.052. [Abstract Kim S.S., Meeker J.D., Carroll R., Zhao S., Mourgas M.J., Richards M.J., Aung M., Cantonwine D.E., McElrath T.F., Ferguson K.K. (2018). Urinary trace metals individually and in mixtures in association with preterm birth. Environmental International, 121: 582-590. PMID: 30300816; PMCID: PMC6233299; DOI: 10.1016/j.envint.2018.09.052.] 
  26. Rosen E.M., Brantsaeter A.L., Lise A., Carroll R., Haug L., Singer A.B., Zhao S., Ferguson K.K. (2018). Maternal Plasma Concentrations of Per- and Poly-Substances and Breastfeeding Duration in the Norwegian Mother and Child Cohort. Environmental Epidemiology. PMID: 30298140; PMCID: PMC6173485; DOI: 10.1097/EE9.0000000000000027. [Abstract Rosen E.M., Brantsaeter A.L., Lise A., Carroll R., Haug L., Singer A.B., Zhao S., Ferguson K.K. (2018). Maternal Plasma Concentrations of Per- and Poly-Substances and Breastfeeding Duration in the Norwegian Mother and Child Cohort. Environmental Epidemiology. PMID: 30298140; PMCID: PMC6173485; DOI: 10.1097/EE9.0000000000000027.] 
  27. Dong J., Buas M.F., Gharahkhani P., Kendall B.J., Onstad L., Zhao S., Anderson L.A., Wu A.H., Ye W., Bird N.C., Bernstein L., Chow W.H., Gammon M.D., Liu G., Caldas C., Pharoah P.D., Risch H.A., Iyer P.G., Reid B.J., Hardie L.J., Lagergren J., Shaheen N.J., Corley D.A., Fitzgerald R.C., Stomach and Oesophageal Cancer Study (SOCS) Consortium, Whitemanm D.C., Vaughan T.L., Thrift A.P. (2018). Determining Risk of Barrett's Esophagus and Esophageal Adenocarcinoma Based on Epidemiologic Factors and Genetic Variants. Gastroenterology. 154 (5): 1273-1281. PMID: 29247777; PMCID: PMC5880715; DOI: 10.1053/j.gastro.2017.12.003. [Abstract Dong J., Buas M.F., Gharahkhani P., Kendall B.J., Onstad L., Zhao S., Anderson L.A., Wu A.H., Ye W., Bird N.C., Bernstein L., Chow W.H., Gammon M.D., Liu G., Caldas C., Pharoah P.D., Risch H.A., Iyer P.G., Reid B.J., Hardie L.J., Lagergren J., Shaheen N.J., Corley D.A., Fitzgerald R.C., Stomach and Oesophageal Cancer Study (SOCS) Consortium, Whitemanm D.C., Vaughan T.L., Thrift A.P. (2018). Determining Risk of Barrett's Esophagus and Esophageal Adenocarcinoma Based on Epidemiologic Factors and Genetic Variants. Gastroenterology. 154 (5): 1273-1281. PMID: 29247777; PMCID: PMC5880715; DOI: 10.1053/j.gastro.2017.12.003.] 
  28. Sharp G.C., Arathimos R., Reese S.E., Page C.M., Felix J., Kupers L.K., Rifas-Shiman S.L., Liu C., The Cohorts for Heart and Aging Research in Genomic Epidemiology Plus Methylation Alcohol Working Group, Burrows K., Zhao S., Magnus M.C., Duijts L., Corpeleijn E., DeMeo D.L., Litonjua A., Baccarelli A., Hivert M., Oken E., Snieder H., Jaddoe V., Nystad W., London S.J., Relton C.L., Zuccolo L. (2018). Maternal Alcohol Consumption and Offspring DNA Methylation: Findings from Six General Population-Based Birth Cohorts. Epigenomics. 10(1): 27-42. PMID: 29172695; PMCID: PMC5753623; DOI: 10.2217/epi-2017-0095. [Abstract Sharp G.C., Arathimos R., Reese S.E., Page C.M., Felix J., Kupers L.K., Rifas-Shiman S.L., Liu C., The Cohorts for Heart and Aging Research in Genomic Epidemiology Plus Methylation Alcohol Working Group, Burrows K., Zhao S., Magnus M.C., Duijts L., Corpeleijn E., DeMeo D.L., Litonjua A., Baccarelli A., Hivert M., Oken E., Snieder H., Jaddoe V., Nystad W., London S.J., Relton C.L., Zuccolo L. (2018). Maternal Alcohol Consumption and Offspring DNA Methylation: Findings from Six General Population-Based Birth Cohorts. Epigenomics. 10(1): 27-42. PMID: 29172695; PMCID: PMC5753623; DOI: 10.2217/epi-2017-0095.] 
  29. Felix J.F., Joubert B.R., Baccarelli A.A, Sharp G.C., [multiple contributing authors in alphabetical order including Zhao S.], Agha G., Relton C.L., Jaddoe V.W.V, London S.J. (2018). Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. International Journal of Epidemiology. 47 (1): 22-23. PMID: 29025028; PMCID: PMC5837319; DOI: 10.1093/ije/dyx190. [Abstract Felix J.F., Joubert B.R., Baccarelli A.A, Sharp G.C., [multiple contributing authors in alphabetical order including Zhao S.], Agha G., Relton C.L., Jaddoe V.W.V, London S.J. (2018). Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. International Journal of Epidemiology. 47 (1): 22-23. PMID: 29025028; PMCID: PMC5837319; DOI: 10.1093/ije/dyx190.] 
  30. Carroll R., Lawson A.B., Zhao S. (2017). Spatial accelerated failure time model for mortality following breast cancer diagnosis. In Press. Social Science & Medicine.
  31. Zhao S., Geybels M.S., Leonardson A., Rubicz R., Kolb S., Yan Q., Klotzle B., Bibikova M., Hurtado-Coll A., Troyer D., Lance R., Lin D.W., Wright J.L., Ostrander E.A., Fan J.B., Feng Z., Stanford J.L. (2017). Epigenome-wide Tumor DNA Methylation Profiling Identifies Novel Prognostic Biomarkers of Metastatic-lethal Progression in Men Diagnosed with Clinically Localized Prostate Cancer. Clinical Cancer Research, 23: 311-319. PMID: 27358489; PMCID: PMC5199634; DOI: 10.1158/10780432.CCR-16-0549. [Abstract Zhao S., Geybels M.S., Leonardson A., Rubicz R., Kolb S., Yan Q., Klotzle B., Bibikova M., Hurtado-Coll A., Troyer D., Lance R., Lin D.W., Wright J.L., Ostrander E.A., Fan J.B., Feng Z., Stanford J.L. (2017). Epigenome-wide Tumor DNA Methylation Profiling Identifies Novel Prognostic Biomarkers of Metastatic-lethal Progression in Men Diagnosed with Clinically Localized Prostate Cancer. Clinical Cancer Research, 23: 311-319. PMID: 27358489; PMCID: PMC5199634; DOI: 10.1158/10780432.CCR-16-0549.]
  32. Rubicz R., Zhao S.*, Wright J.L., Coleman I., Grasso C., Geybels M., Leonardson, A., Kolb S., April C., Bibikova M., Troyer D., Lance R, Lin D.W., Ostrander E.A., Nelson P.S., Fan J., Feng Z., Stanford J.L. (2017). Gene Expression Panel Predicts Metastatic-Lethal Prostate Cancer Outcomes in Men Diagnosed with Clinically Localized Prostate Cancer. Molecular Oncology, 11: 140-150. PMID: 28145099; PMCID: PMC5510189; DOI: 10.1002/1878-0261.12014. (*co-first authors) [Full Text Rubicz R., Zhao S.*, Wright J.L., Coleman I., Grasso C., Geybels M., Leonardson, A., Kolb S., April C., Bibikova M., Troyer D., Lance R, Lin D.W., Ostrander E.A., Nelson P.S., Fan J., Feng Z., Stanford J.L. (2017). Gene Expression Panel Predicts Metastatic-Lethal Prostate Cancer Outcomes in Men Diagnosed with Clinically Localized Prostate Cancer. Molecular Oncology, 11: 140-150. PMID: 28145099; PMCID: PMC5510189; DOI: 10.1002/1878-0261.12014. (*co-first authors)]
  33. Reese S.E., Zhao S., Wu M.C., Joubert B.R., Parr C.L., H˚aberg S.E., Ueland P.M., Nilsen R.M., Midttun Ø., Vollset S.E., Peddada, S.D., NystadW., London S.J. (2017). DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy. Environmental Health Perspectives. PMID: 27323799; PMCID: PMC5391987. DOI: 10.1289/EHP333. [Abstract Reese S.E., Zhao S., Wu M.C., Joubert B.R., Parr C.L., H˚aberg S.E., Ueland P.M., Nilsen R.M., Midttun Ø., Vollset S.E., Peddada, S.D., NystadW., London S.J. (2017). DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy. Environmental Health Perspectives. PMID: 27323799; PMCID: PMC5391987. DOI: 10.1289/EHP333.]
  34. Stanford J.L., FitzGerald L.M., Zhao S., Leonardson A., Geybels M., Kolb S., Lin D.W., Wright J., Eeles R., Kote-Jarai Z., Giles G.G., Southey M.C., Schleutker J., Tammela T.L., Sipeky C., Penney K.L., Stampfer M.J., Gronberg H., Wiklund F., Stattin P., Hugosson J., Karyadi D.M., Ostrander E.A., Feng Z.. Germline Variants in IL4 and MGMT are Associated with Prostate Cancer Mortality: A Meta-analysis of 12,082 Patients from Seven International Cohorts. In Press. Prostate Cancer and Prostatic Diseases.
  35. Park Y.M., O’Brien K.M., Zhao S., Weinberg C.R., Baird, D.D., Sandler, D.P. (2017). Gestational Diabetes Mellitus May be Associated With an Increased Risk of Breast Cancer. British Journal of Cancer, 116: 960-960. PMID: 28208154; PMCID: PMC5379146; DOI: 10.1038/bjc.2017.34. [Abstract Park Y.M., O’Brien K.M., Zhao S., Weinberg C.R., Baird, D.D., Sandler, D.P. (2017). Gestational Diabetes Mellitus May be Associated With an Increased Risk of Breast Cancer. British Journal of Cancer, 116: 960-960. PMID: 28208154; PMCID: PMC5379146; DOI: 10.1038/bjc.2017.34.]
  36. Sharp G.C., Arathimos R., Reese S.E., Page C.M., Felix J., Kupers L.K., Rifas-Shiman S.L., Liu C., The Cohorts for Heart and Aging Research in Genomic Epidemiology Plus Methylation AlcohoWorking Group, Burrows K., Zhao S., Magnus M.C., Duijts L., Corpeleijn E., DeMeo D.L., Litonjua A., Baccarelli A., Hivert M., Oken E., Snieder H., Jaddoe V., Nystad W., London S.J., Relton C.L., Zuccolo L. (2017). Maternal Alcohol Consumption and Offspring DNA Methylation: Findings from Six General Population-Based Birth Cohorts. In Press. Epigenomics.
  37. Felix J.F., Joubert B.R., Baccarelli A.A, Sharp G.C., [multiple contributing authors in alphabetical order including Zhao.S, Agha G., Relton C.L., Jaddoe V.W.V, London S.J. (2017). Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. International Journal of Epidemiology, 1-23. DOI: 10.1093/ije/dyx190. [Full Text Felix J.F., Joubert B.R., Baccarelli A.A, Sharp G.C., [multiple contributing authors in alphabetical order including Zhao.S, Agha G., Relton C.L., Jaddoe V.W.V, London S.J. (2017). Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. International Journal of Epidemiology, 1-23. DOI: 10.1093/ije/dyx190.]
  38. Prentice R.L., Zhao S. (2016). Nonparametric Estimation of the Multivariate Survivor Function: the Multivariate Kaplan-Meier Estimator. Lifetime Data Analysis. PMID: 27677472; PMCID: PMC5373162; DOI: 10.1007/s10985-016-93830y. [Abstract Prentice R.L., Zhao S. (2016). Nonparametric Estimation of the Multivariate Survivor Function: the Multivariate Kaplan-Meier Estimator. Lifetime Data Analysis. PMID: 27677472; PMCID: PMC5373162; DOI: 10.1007/s10985-016-93830y.]
  39. Shui I.M., Wong C., Zhao S., Kolb S., Ebot E.M., Geybels M., Rubicz R., Wright J.L., Lin D.W., Klotzle B., Bibikova M., Fan J., Ostrander E.A., Feng Z., Stanford J.L.. Prostate tumor DNA methylation is associated with cigarette smoking and adverse prostate cancer outcomes. Cancer. In press.
  40. Rubicz R., Zhao S., Geybels M., Wright J.L., Kolb S., Klotzled B., Bibikova M., Troyer D., Lance R., Ostrander E.A., Feng Z., Fan J.B., Stanford J.L. (2016). DNA Methylation Profiles in African American Prostate Cancer Patients in Relation to Disease Progression. Genomics. doi: 10.1016.j.ygeno.2016.02.004. PMID: 26902887; PMCID: PMC4992660. [Abstract Rubicz R., Zhao S., Geybels M., Wright J.L., Kolb S., Klotzled B., Bibikova M., Troyer D., Lance R., Ostrander E.A., Feng Z., Fan J.B., Stanford J.L. (2016). DNA Methylation Profiles in African American Prostate Cancer Patients in Relation to Disease Progression. Genomics. doi: 10.1016.j.ygeno.2016.02.004. PMID: 26902887; PMCID: PMC4992660.]
  41. Valeri L., Reese S.L., Zhao S., Page C.M., Nystad W., Coull B.A., London S.J. (2016). Misclassified Exposure in Epigenetic Mediation Analyses. Does DNA Methylation Mediate Effects of Smoking on Birthweight? Epigenomics, 9: 253-265. PMID: 28234025 PMCID: PMC5331915; DOI: 10.2217/epi-2016-0145. [Abstract Valeri L., Reese S.L., Zhao S., Page C.M., Nystad W., Coull B.A., London S.J. (2016). Misclassified Exposure in Epigenetic Mediation Analyses. Does DNA Methylation Mediate Effects of Smoking on Birthweight? Epigenomics, 9: 253-265. PMID: 28234025 PMCID: PMC5331915; DOI: 10.2217/epi-2016-0145.] 
  42. Geybels M.S., Wright J.L., Bibikova M., Klotzle B., Fan J.B., Zhao S., Feng Z., Ostrander E.A., Lin D.W., Nelson P.S., Stanford J.L. (2016). Epigenetic Signature of Gleason Score and Prostate Cancer Recurrence after Radical Prostatectomy. Clinical Epigenetics, 8:97. PMID: 27651837; PMCID: PMC5024414; DOI: 10.1186/s13148016-0260-z. [Abstract Geybels M.S., Wright J.L., Bibikova M., Klotzle B., Fan J.B., Zhao S., Feng Z., Ostrander E.A., Lin D.W., Nelson P.S., Stanford J.L. (2016). Epigenetic Signature of Gleason Score and Prostate Cancer Recurrence after Radical Prostatectomy. Clinical Epigenetics, 8:97. PMID: 27651837; PMCID: PMC5024414; DOI: 10.1186/s13148016-0260-z.] 
  43. Schade G.R., Holt S., Zhang X., Wright J.L., Zhao S., Kolb S., Lam H.M., Song D., Levin L., Leung Y.K., Ho S.M., Stanford J.L. (2016). Prostate Cancer Expression Profiles of Cytoplasmic ERβ1 and Nuclear ERβ2 are Associated with Poor Outcomes Following Radical Prostatectomy. Journal of Urology.doi:10.1016/j.juro.2015.12.101. [Abstract Schade G.R., Holt S., Zhang X., Wright J.L., Zhao S., Kolb S., Lam H.M., Song D., Levin L., Leung Y.K., Ho S.M., Stanford J.L. (2016). Prostate Cancer Expression Profiles of Cytoplasmic ERβ1 and Nuclear ERβ2 are Associated with Poor Outcomes Following Radical Prostatectomy. Journal of Urology.doi:10.1016/j.juro.2015.12.101.]
  44. Zhao S., Zheng Y., Prentice R.L., Feng, Z. (2015). Estimation from a Two-Stage Biomarker Study Allowing Early Termination for Futility. Biostatistics. doi: 10.1093/biostatistics/kxv017.
  45. Geybels M.S., Alumkal J.J., Luedeke M., Rinckleb A., Zhao S., Shui I.M., Bibikova M., Klotzle B., van den Brandt P.A., Ostrander E.A., Fan J., Feng Z., Maier C., Stanford J.L. (2015). Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion positive versus negative tumors. Clinical Epigenetics. doi: 10.1186/s13148-015-0161-6.
  46. Geybels M.S., Zhao S., Wong C., Bibikova M., Klotzle, B., Wu, M., Ostrander E.A., Fan J., Feng Z., Stnaford J.L. (2015). Epigenome-wide profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate. doi: 10.1002/pros.23093.
  47. Rubicz R., Zhao S.*, April C., Wright J.L., Kolb S., Coleman I., Lin D.W., Nelson P.S., Ostrander, E.A., Feng Z., Fan J., Stanford J.L. (2015). Expression of cell cycle-regulated genes and prostate cancer prognosis in a population-based cohort. Prostate, 75: 1354-1362 . (*co-first authors)
  48. Karyadi, D. M., Zhao S.*, He C., McIntosh, L., Wright, J.L., Ostrander, E.A., Feng, Z., Stanford J.L. (2015) Confirmation of Genetic Variants Associated with Lethal Prostate Cancer in a Cohort of Men from Hereditary Prostate Cancer Families. International Journal of Cancer, doi: 10.1002/ijc.29241. (*co-first authors) [Abstract Karyadi, D. M., Zhao S.*, He C., McIntosh, L., Wright, J.L., Ostrander, E.A., Feng, Z., Stanford J.L. (2015) Confirmation of Genetic Variants Associated with Lethal Prostate Cancer in a Cohort of Men from Hereditary Prostate Cancer Families. International Journal of Cancer, doi: 10.1002/ijc.29241. (*co-first authors)]
  49. Zhao S., Prentice R.L. (2014). Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Outcome. Biometrics, 70: 835-844. doi: 10.1111/biom.12205. 
    (An earlier version won the 2014 ASA biometrics section David P. Byar travel award.) [Abstract Zhao S., Prentice R.L. (2014). Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Outcome. Biometrics, 70: 835-844. doi: 10.1111/biom.12205. 
    (An earlier version won the 2014 ASA biometrics section David P. Byar travel award.)
    ]
  50. Zhao S., Chlebowski R.T., Anderson G., Kuller L.H., Manson J.E., Gass M., Patterson R., Rohan T.E., Lane D.S., Beresford S.A.A, Lavasani, S., Rossouw, J.E., Prentice R.L. (2014). Sex Hormone Associations with Breast Cancer Risk and the Mediation of Randomized Trial Postmenopausal Hormone Therapy Effect. Breast Cancer Research. 16: R30. doi:10.1186/bcr3632. [Abstract Zhao S., Chlebowski R.T., Anderson G., Kuller L.H., Manson J.E., Gass M., Patterson R., Rohan T.E., Lane D.S., Beresford S.A.A, Lavasani, S., Rossouw, J.E., Prentice R.L. (2014). Sex Hormone Associations with Breast Cancer Risk and the Mediation of Randomized Trial Postmenopausal Hormone Therapy Effect. Breast Cancer Research. 16: R30. doi:10.1186/bcr3632.]
  51. Stott-Miller, M., Zhao S.*, Wright, J.L., Bibikova, M., Klotzle, B., Fan, J., Ostrander, E.A., Feng, Z., and Stanford, J.L. (2014). Validation Study of Candidate Genes with Hypermethylated Promoter Regions Associated with Prostate Cancer Recurrence. Cancer Epidemiology, Biomarkers & Prevention, 23: 1331-1339. doi: 10.1158/1055-9965.EPI-13-1000. (*co-first authors) [Abstract Stott-Miller, M., Zhao S.*, Wright, J.L., Bibikova, M., Klotzle, B., Fan, J., Ostrander, E.A., Feng, Z., and Stanford, J.L. (2014). Validation Study of Candidate Genes with Hypermethylated Promoter Regions Associated with Prostate Cancer Recurrence. Cancer Epidemiology, Biomarkers & Prevention, 23: 1331-1339. doi: 10.1158/1055-9965.EPI-13-1000. (*co-first authors)]
  52. Prentice, R.L., Zhao S., Johnson, M., Aragaki, A., Hsia, J., Jackson, R.D., Rossouw, J.E., Manson, J.E., Hanash, S.M. (2013). Proteomic Risk Markers for Coronary Heart Disease and Stroke: Validation and Mediation of Postmenopausal Hormone Therapy Effects. Genome Medicine. 5: 112. doi:10.1186/gm517. [Abstract Prentice, R.L., Zhao S., Johnson, M., Aragaki, A., Hsia, J., Jackson, R.D., Rossouw, J.E., Manson, J.E., Hanash, S.M. (2013). Proteomic Risk Markers for Coronary Heart Disease and Stroke: Validation and Mediation of Postmenopausal Hormone Therapy Effects. Genome Medicine. 5: 112. doi:10.1186/gm517.]
  53. Zhao, S., Cook, A.J., Jackson, L.A., and Nelson, J.C. (2012). Statistical Performance of Group Sequential Methods for Post-Licensure Medical Product Safety Surveillance: A Simulation Study. Statistics and Its Interface. 5: 381-390. doi: http://dx.doi.org/10.4310/SII.2012.v5.n4.a1.
  54. Prentice R.L., Zhao S. (2012) On the Use of Biomarkers to Elucidate Clinical Trial Results: Examples from the Women's Health Initiative. Proceedings of the Fourth Seattle Symposium in Biostatistics: Clinical Trials, Springer.
  55. Nelson J.C., Cook A.J., Yu O., Zhao S., Dominguez C., Fireman B., Greene S., Jacobsen S.J., Weintraub E., Jackson L.A. (2012) Challenges in the Design and Analysis of Sequentially-Monitored Post-Licensure Safety Surveillance Studies Using Observational Health Care Utilization Data. Pharmacoepidemiology and Drug Safety. 21 Suppl 1:62-71. [Abstract Nelson J.C., Cook A.J., Yu O., Zhao S., Dominguez C., Fireman B., Greene S., Jacobsen S.J., Weintraub E., Jackson L.A. (2012) Challenges in the Design and Analysis of Sequentially-Monitored Post-Licensure Safety Surveillance Studies Using Observational Health Care Utilization Data. Pharmacoepidemiology and Drug Safety. 21 Suppl 1:62-71.]
  56. Nelson J.C., Cook A.J., Yu O., Zhao S., Jackson L.A., Psaty B.M., Kulldorff  M. (2011) Methods for Observational Post-Licensure Medical Product Safety Surveillance. Statistical Methods in Medical Research. doi: 10.1177/0962280211413452. [Abstract Nelson J.C., Cook A.J., Yu O., Zhao S., Jackson L.A., Psaty B.M., Kulldorff  M. (2011) Methods for Observational Post-Licensure Medical Product Safety Surveillance. Statistical Methods in Medical Research. doi: 10.1177/0962280211413452.]
  57. Nelson J.C., Bittner R.C., Bounds L., Zhao S., Baggs J., Donahue J.G., Hambidge S.J., Jacobsen S.J., Klein N.P., Naleway A.L., Zangwill K.M., Jackson L.A. (2009) Compliance with Multiple-Dose Vaccine Schedules Among Older Children, Adolescents, and Adults: Results From a Vaccine Safety Datalink Study. American Journal of Public Health, 99(S2): S389-S397. [Abstract Nelson J.C., Bittner R.C., Bounds L., Zhao S., Baggs J., Donahue J.G., Hambidge S.J., Jacobsen S.J., Klein N.P., Naleway A.L., Zangwill K.M., Jackson L.A. (2009) Compliance with Multiple-Dose Vaccine Schedules Among Older Children, Adolescents, and Adults: Results From a Vaccine Safety Datalink Study. American Journal of Public Health, 99(S2): S389-S397.]