Using the HARM Worksheet

To provide content and context for complex topics while teaching HAZWOPER classes

By the End of This Presentation, Attendees will be able to:

Identify	Identify the HARM worksheet and its component parts
Assess	Assess the application of the HARM worksheet in a training setting
Demonstrate	Demonstrate the use of the HARM worksheet

From whence it came-the HARM Worksheet

First introduced to me at a NIEHS National Trainers' Exchange eons ago by the United Paper Workers (UPIU)
Which merged with the Oil, Chemical, and Atomic Workers (OCAW) creating PACE which merged with the United Steelworkers
(labor historians correct me if I'm wrong)

Evolution of the HARM Worksheet

Expanded the Worksheet primarily as a teaching tool (many versions)

Can also be used for pre-event planning

Evolution of the HARM Worksheet (cont)

- Updated and expanded over the years:
 - CCC Oil Spill Response (Regular/Occasional Site Worker)
 - HazMat for Healthcare
 - SEIU
 - CCC General Site Worker

The Current Setting:

- California Conservation
 Corps:
 - CA State Agency
 - Corpsmembers (CMs) are generally 18-24 years old
 - Often do not learn well in a traditional academic setting

The Curriculum:

An OSHA Hazardous Waste Operations and Emergency Response General Site Worker (plus a First Responder Awareness and Operations course) 40 hours delivered as 4 ten-hour classes

Modules of CCC GSW

- What We Do
- Rights, Writes, and Rites
- Health and Safety Programs
- What's So Hazardous About It?
- Toxicity and You
- Besides the Chemicals, What Can Hurt Me?
- Does This HazMat Suit Make My Butt Look Yellow?
- How do I know what I'm working with?
- Hazards and Safety
- What a Waste
- When the Toxic Waste Hits the Fan

• We may jump around a bit, but be assured, we'll cover everything.

The Challenge:

TC

Re

- How to effectively convey basic:
 - Chemistry

MO

- Fire Science
- Physical Properties
- Toxicology
- Response Resources
- And assist the CMs to synthesize into useful and useable information

17

=H³O

 OH^2

Os

Osmium

In a couple of hours...

Name and Basic Info up top

Hence:

Capabilities and limitations on bottom

What challenges are there to you handling this? _

Approach:

Way too many topics to cover in a short period of time to an audience that has little background (or interest) in the material

Deconstruct each component in general and apply to a specific chemical

Build a picture of the individual hazards and relative risks

Bring together and put into perspective Determine and demystify hazards and risks Compare and Contrast with other chemicals

How Presented:

- In the student handouts each has the following for Xylene:
 - Safety Data Sheet
 - NIOSH Pocket Guide
 - ATSDR Medical Management Guidelines
 - Yellow (number), Blue (name), Orange (guide) pages from the ERG
 - And WISER or other reputable searchable resources ("Cheating counts!")
- Two copies of the HARM Worksheet
- First introduced in Module 4 "What's So Hazardous About It?"

Excerpts from "What's So Hazardous About It?"

Curriculum has more depth than presented here

Introducing-The HARM Form

What HARM means to you

- Toxicity –
- Flammability –
- Solubility –
- Specific Gravity –
- Vapor Density –
- Vapor Pressure –
- Corrosivity –
- Carcinogenic –

How poisonous is it?

- How easily does it catch fire?
 - What does it mix with?
- Will it sink or float in water?
 - Will it settle/stay/float away in air?
 - How easily does it get into the air?
 - Will it eat away at me or my suit?
 - Could it cause cancer in me?

Harm Risk Assessment Worksheet

What does the HARM Form do?

The HARM form is a tool to identify the chemi and the relative ris	cal and physical hazards that may be present k of those hazards
HazMat for HARM / Risk Asse	Healthcare ssment Worksheet
Product Name:	UN# (4 digits)
DOT Hazard Class: EX-FG-FL-FS-OX-PO-RA-CO-OT	Physical State: (at 68 degrees F) Solid/Liquid/Gas
ERG Guide # Poison Control Inform	NFPA: H F R S (0-4) ation = (800) 222-1222

Key Point: This form is useful in evaluating chemical and physical hazards.

Toxicity

- Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism.
- It's the degree to which a substance (a toxin or poison) can harm humans or animals.
- Acute toxicity involves harmful effects in an organism (that could be you) through a single or short-term exposure.
- A central concept of toxicology is that the effects of toxicants are dose-dependent; even water can lead to water intoxication when taken in too high a dose.

Flammability / Combustible

- Combustible material is something that can combust (burn) in the air.
- Flammable materials are combustible materials that ignite easily at ambient temperatures.
- In other words, a combustible material ignites with some effort and flammable material catches fire immediately when exposed to a flame.

Solubility

- Solubility is the property of a solid, liquid, or gaseous chemical substance called solute to dissolve in a solid, liquid, or gaseous solvent.
- When you put cooking oil into a measuring cup filled with water, what happens? Is it soluble? (no)

Specific Gravity

- Specific gravity is the ratio of the density of a substance to the density of given reference material.
- Substance density / reference density = specific gravity
- Generally, water= 1: less than one rises, greater than one sinks
- Take buoyancy. If a substance has a specific gravity less than that of a fluid, like water, it will float on that fluid. Example:
 - Oil (SG <1) will form a slick on the water.

Vapor Density

- Vapor Density tells us the relative weight of a gas or vapor compared to air, which has an arbitrary value of one.
- If a gas has a vapor density of less than one it will generally rise in the air.
- If the vapor density is greater than one the gas will generally sink in air.
- Vapor density indicates whether gas is denser (greater than one) or less dense (less than one) than air.
- For example, Helium-filled balloons will rise in the air.
- AKA "RgasD" NIOSH

Vapor Pressure

Vapor pressure is a measure of the tendency of a material to change into the gaseous or vapor state, and it increases with temperature. The temperature at which the vapor pressure at the surface of a liquid becomes equal to the pressure exerted by the surroundings is called the boiling point of the liquid.

For example, as the water boils at sea level, its vapor pressure is 1 atmosphere because the external pressure is also 1 atmosphere.

 Generally, a substance's vapor pressure increases as temperature increases; and decreases as temperature decreases (i.e. vapor pressure is directly proportional to temperature)

Corrosivity

- Corrosivity is measured with something called pH- with water having a value of 7.
- Something that is basic (or caustic) is above 7 and something that is acidic is below 7.
- So, a liquid with a pH of 1 is very, very acidic and a liquid with a pH of 14 is very, very caustic.
- A substance that is corrosive is one that has the ability to damage or destroy other substances when they come into contact.
- This means it has the properties or qualities to corrode. (erode or eat away)
- Corrosive Chemicals on substances result in highly destructive and harmful effects.
- A corrosive substance can severely attack a number of materials, including organic compounds and metals.
- In addition to that, living tissues can also be greatly affected by the corrosivity of a substance.

-13

Corrosivity

• The cause was shipping a corrosive material in the aluminum cargo tank which was not compatible for that substance.

Carcinogenetic

Occupation	Type of Cancer		
Mining, pesticide workers	Lung, skin, liver		
Construction workers	Lung, mesothelioma		
Petroleum, rubber, chemical workers	Leukemia		
Metal workers, electroplaters	Lung		
Shoe manufacturing	Nasal, bladder		
Chemical, dye, rubber workers	Bladder		
Underground mining	Lung		
Coal, gas, petroleum workers	Lung, skin, liver		
Rubber workers, polyvinyl chloride manufacturing	Liver		
Furniture manufacturing	Nasal		
	Occupation Mining, pesticide workers Construction workers Petroleum, rubber, chemical workers Metal workers, electroplaters Shoe manufacturing Chemical, dye, rubber workers Underground mining Coal, gas, petroleum workers Rubber workers, polyvinyl chloride manufacturing		

We'll be using Xylene as an exemplar

Small Group Activity (Usually conducted after the initial HARM presentation)

Form small groups by table

Choose a chemical

Research and fill out HARM worksheet as we go along

LATER:

Determine what is important to convey

Report back

HAZMAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Let's get started

ERG purpose:

- Basic safety tool
- Basic identification
- Initial actions

OVERVIEW OF THE EMERGENCY RESPONSE GUIDEBOOK (ERG) 2020

Info Sources ERG Organization

Orange — Chemical information

White — Basic

info &

instructions

Green —Isolation & Protective Actions

Yellow — UN #, guide # & material name

Blue — Material name, guide # & UN #

Listed by Placard Number

ID No.	Guid No.	le Name of Material	ID No.	Guid No.	le Name of Material
1287	127	Rubber solution	1314	133	Calcium resinate, fused
1288	128	Shale oil	1318	133	Cobalt resinate, precipitated
1289	132	Sodium methylate, solution in alcohol	1320	113	Dinitrophenol, wetted with not less than 15% water
1292	129	Ethyl silicate	1321	113	Dinitrophenolates, wetted with not less than 15% water
1292	129	Tinctures, medicinal	1322	113	Dinitroresorcinol, wetted with not less than 15% water
1294	130	Toluene	1323	170	Ferrocerium
1295	139	Trichlorosilane	1324	133	Films, nitrocellulose base
1296	132	Triethylamine	1325	133	Flammable solid, n.o.s.
1297	132	Trimethylamine, aqueous	1325	133	Flammable solid, organic, n.o.s.
		solution	1325	133	Fusee (rail or highway)
1298	155	Trimethylchlorosilane	1326	170	Hafnium powder, wetted with
1299	128	Turpentine			not less than 25% water
1300	128	Turpentine substitute	1327	133	Bhusa, wet, damp or contaminated with oil
1301	129P	Vinyl acetate, stabilized	1997	199	Hav wet damp or contaminated
1302	127P	Vinyl ethyl ether, stabilized	1927	100	with oil
1303	130P	Vinylidene chloride, stabilized	1327	133	Straw, wet, damp or
1304	127P	Vinyl isobutyl ether, stabilized			contaminated with oil
1305		,	1328	133	Hexamethylenetetramine
1305	155P	Vinyltrichlorosilane, stabilized	1328	133	Hexamine
1306	129	Wood preservatives, liquid	135	133	Manganese resinate
1307	130	Xylenes	1331	13	Matches, "strike anywhere"
1308	170	Zirconium metal, liquid	1337	.33	Metaldehyde
		suspension		170	Cerium, slabs, ingots or rods
1308	110	flammable liquid	1334	133	Naphthalene, crude
1000	170	Ziraanimable inquid	1334	133	Naphthalene, refined
1300	170	(flammable)	1336	113	Nitroguanidine (Picrite), wetted with not less than 20% water
1309	170	Aluminum powder, coated	1336	113	Nitroguanidine, wetted with not
1310	113	Ammonium picrate, wetted with not less than 10% water	1336	113	Picrite, wetted
1312	133	Borneol	1337	113	Nitrostarch, wetted with not less
1313	133	Calcium resinate			than 20% water
					Page 2/

Xenon	121	2036	
Xenon, compressed	121	2036	\mathbf{N}
Xenon, refrigerated liquid (cryogenic liquid)	120	2591	
Xylenes	130	1307	
Xylenols	153	2261	
Xylenols, liquid	153	3439	

Name of Material G	iuide No.	ID No.	Name of Material G	Suide No.	ID No.
Vanadyi sulphate	151	2931	Water-reactive solid,	138	3133
Vehicle, flammable gas	128	3166	oxidizing, n.o.s. Water-reactive solid,	139	3134
Vehicle, flammable liquid	128	3166	poisonous, n.o.s. Water-reactive solid, self-	138	3135
Vehicle, fuel cell, flammable	128	3166	heating, n.o.s. Water-reactive solid, toxic,	139	3134
Vehicle, fuel cell, flammable	128	3166	n.o.s. Wheelchair, electric, with	154	3171
Vinyl acetate, stabilized	129P	1301	batteries		
Vinyl bromide, stabilized	116P	1085	white aspestos	1/1	2590
Vinyl butyrate, stabilized	129P	2838	White phosphorus, ary	130	1381
Vinyl chloride, stabilized	116P	1086	White phosphorus, in solution	136	2447
Vinyl chloroacetate	155	2589	White phosphorus, under	136	1381
Vinyl ethyl ether, stabilized	127P	1302	water		
Vinyl fluoride, stabilized	116P	1860	Wood preservatives, liquid	129	1306
Vinylidene chloride, stabilized	130P	1303	Wool waste, wet	133	1387
Vinyl isobutyl ether, stabilized	127P	1304	Xanthates	135	3342
Vinyl methyl ether, stabilized	116P	1087	Xenon	121	2036
Vinylpyridines, stabilized	131P	3073	Xenon, compressed	121	2036
Vinyltoluenes, stabilized	130P	2618	Xenop wogenic liquid)	100	2591
Vinyltrichlorosilane	155P	1305	Xvienes	130	130
Vinyltrichlorosilane, stabilized	155P	17 5	Xylenois	153	2261
vx	153	2 10	Xylenols, liquid	153	3430
Water-reactive liquid, corrosive, n.o.s.	138	31	Xylenois, solid	153	2261
Water-reactive liquid, n.o.s.	138	3148	, lidines	153	. 11
Water-reactive liquid,	139	3130	Xylidines, inquis	153	1711
Water-reactive liquid, toxic,	139	3130	Xylidines, solid Xylidines, solid	153 153	1711 3452
Water-reactive solid,	138	3131	Xylyl bromide	152	1701
Water-reactive solid, flammable, n.o.s.	138	3132	Xylyl bromide, liquid Xylyl bromide, solid	152 152	1701 3417
Water-reactive solid, n.o.s.	138	2813	Yellow phosphorus, dry	136	1381

HAZMAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Info Sources to Aid IDHA

National Fire Protection Association (NFPA) 704 System

- Blue = Health
- Red = Flammability
- Yellow = Instability (aka Reactivity)
- No color = special hazards
 - # in diamond 0 = No Hazard to 4 = Worst Hazard

XYLENE- [Material] Safety Data Sheet

- 16. Other Information
- NFPA Ratings: Health: 2 Flammability: 3 Instability: 0
- Label Hazard Warning:
- DANGER! HARMFUL OR FATAL IF SWALLOWED. VAPOR HARMFUL. AFFECTS CENTRAL
- NERVOUS SYSTEM. CAUSES SEVERE EYE IRRITATION. CAUSES IRRITATION TO SKIN AND
- RESPIRATORY TRACT. MAY BE HARMFUL IF ABSORBED THROUGH SKIN. CHRONIC EXPOSURE

HAZMAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Excerpts from "Toxicity and You?"

Approximate Acute LD50 for various chemical compounds

	Ethyl Alcohol	10000	
	Sodium Chloride	4000	
Which one is the	Morphine Sulfate	900	ROAD CLOSED
most danaerous?	Phenobarbital Sodium	150	RESTRICTED ACCESS TOP HARE TOP HAS
	DDT	100	HAZARDOUS WASTE SITE
	Nicotine	50	• STAY IN YOUR CAR • MINIMIZE TRAVEL
	Vitamin D	10	• STAY ON PAVEMENT • DRIVE SLOWLY
	Strychnine	2	DEPA, KANSAS CITY (BI6) 374-6529
A	Dioxin (TCDD)	0.001	
A A	Botulinus Toxin	0.00001	

Key Point: The lower the LD50 (and other exposure limits) the greater the hazard!

Threshold Limit Value (TLV)

Upper limit of exposure

- average person/average health
- day to day basis
- no adverse effects
- Recommended standard only
- Expressed in
 - mg/m3 solids
 - PPM gases/vapors
 - micrograms/m3 fumes/mists

Short Term Exposure Limit and TLV-C

STEL

 Generally, exposure level up to 15 minutes during work period

TLV-C

- Not to be exceeded
- Maximum permitted exposure

TLV also shown as TLV-TWA, STEL, and TLV-C

- Threshold Limit Value-
- Time Weighted Average
 - through one work week (8 hours/day)
- Short Term Exposure Limit
 - Excursion (15 minutes)
- Ceiling
 - maximum limit allowed above TLV-TWA

GAS	TLV- TWA (PPM)	STEL (PPM)	IDLH (PPM)
Hydrogen Sulphide (H ₂ S)	10	15	100
Sulphur Dioxide (SO ₂)	2	5	100
Ammonia (NH ₃)	25	35	300
Chlorine (Cl ₂)	0.5	1	10
Carbon Monoxide (CO)	25	50	1200
Acetylene (C ₂ H ₂)			

Remember: The lower the exposure value/limit- the greater the hazard

Permissible Exposure Limit

Compound	PEL ² (ppm)				
Benzene	1.0				
Carbon monoxide	50				
Carbon tetrachloride	10				
Chloroform	50				
Nitrogen dioxide	5				
Ozone	0.1				
Sulfur dioxide	5				
Tetrachloroethylene	100				
Toluene	200				
1,1,1-Trichloroethane	350				
Trichloroethylene	100				

¹These exposure limits can be found at http://www.osha.gov, 1910.1000, Tables Z-1 and Z-2. The OSHA standards are updated frequently and readers are referred to the website for the most current information.

²PELs are 8-hour TWA (time weighted average) values for a normal 8-hour workday to which workers may be repeatedly exposed without adverse effects.

Maximum permitted eight-hour time-weighted average concentration airborne contaminant

- Equivalent definition to TLV-TWA
- PEL is a legal limit
- Enforced by OSHA

Remember: The Permissible Exposure Limit is the one that is enforceable

NIOSH Pocket Guide to Chemical Hazards

Back to Xylene...

m-Xylene

Synonyms & Trade Names 1,3-Dimethylbenzene; meta-Xylene; m-Xylol RTECS No. DOT ID & Guide CAS No. 1307 130 108-38-3 ZE2275000 IDLH Formula Conversion 900 ppm $C_6H_4(CH_3)_2$ $ppm = 4.34 mg/m^{3}$ See: 95476 Exposure Limits Measurement Methods NIOSH REL : TWA 100 ppm (435 mg/m³) ST 150 ppm (655 mg/m³) NIOSH 1501, 3800; OSHA PEL OSHA 1002 †: TWA 100 ppm (435 mg/m³) See: NMAM or OSHA Methods Physical Description Colorless liquid with an aromatic odor. CH4

 image: critic - xylene
 meta - xylene

[Material] Safety Data Sheet

1 of 2

8. Exposure Controls/Personal Protection Airborne Exposure Limits:

-OSHA Permissible Exposure Limit (PEL):

100 ppm (TWA) xylene 🖪

100 ppm (TWA) ethylbenzene

-ACGIH Threshold Limit Value (TLV):

xylene: 100 ppm (TWA) 150 ppm (STEL), A4 - Not classifiable as a human carcinogen. ← ethyl benzene: 100 ppm (TWA) 125 ppm (STEL), A3 - Confirmed Animal Carcinogen with Unknown Relevance to Humans.

[Material] Safety Data Sheet 2 of 2

8. Exposure Controls/Personal Protection Airborne Exposure Limits: Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area.

Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices, most recent edition, for details. Use* explosion-proof equipment.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded and engineering controls are not feasible, a half-face organic vapor respirator

ATSDR Medical Management Guidelines (MMG) Standards and Guidelines

OSHA PEL (permissible exposure limit) = 100 ppm (averaged over an 8-hour work shift) NIOSH IDLH (immediately dangerous to life or health) = 900 ppm

Exposure values are also found in the General Information section of the MMG.

HAZMAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Physical Properties

			XYLE	NE			
NIOSH REL							
: TWA 100 ppm (435 mg/i	m³) ST 150 ppm (655	mg/m³)			NIOSH <u>1501</u> , <u>380</u>	<u>)0</u> ;	
OSHA PEL					OSHA <u>1002</u>		
t: TWA 100 ppm (435 mg/m ³) See: NMAM or OSHA Methods							
Physical Description Colorless liquid with an a	omatic odor.			•••••			
MW:	BP:	FRZ:		Sol:	VP:	IP:	
106.2	282°F	-54°F		Slight	9 mmHg	8.56 eV	
Sp.Gr:	FI.P:	UEL:		LEL:			
0.86	82°F	7.0%		1.1%			
Class IC Flammable Liquid	l: Fl.P. at or above 73	°F and below 100°F.		·	•	•	
Incompatibilities & React Strong oxidizers, strong a	ci vities	•					
Exposure Routes							

NIOSH Pocket Guide to Chemical Hazards

.....

ATSDR Medical Management Guidelines

	Physical Properties	XYLENE	
	Description: Clear, colorle	ss liquid	
	Warning properties: Adec	uate; sweet, aromatic odor at 1 p	opm
	Molecular weight: 106.2 c	altons	
	Boiling point (760 mm Hg)*: 292ºF (144ºC), 269ºF (139ºC),	and 281ºF (138ºC)◀
	Freezing point*: -13°F (-2	5ºC), -54ºF (-48ºC), and 56ºF (13º	² C)
\sim	Specific gravity*: 0.88, 0.8	36, and 0.86 (water = 1)	
	Vapor pressure*: 5, 6, and	6.5 mm Hg at 68ºF (20ºC)	
\sim	Gas density: 3.8 (air = 1)		
\sim	Water solubility: insoluble		
	Flammability*: 63ºF (17º0	C), 81ºF (27ºC), 81ºF (27ºC)	
~~~	Flammable range: 1.0% to	7.0% (concentration in air)	
~~~	*ortho-, meta-, and para-	xylene, respectively.	



# 9. Physical and Chemical Properties

The following physical data is for xylene.

## **Appearance:**

Clear, colorless liquid.

Odor:

Characteristic odor.

Solubility:

Insoluble in water.

**Specific Gravity:** 

0.86 @ 20C/4C



Key Point: Importance of using multiple credible resources and significance of minor/major variations

## pH: Not applicable. % Volatiles by volume @ 21C (70F):100 **Boiling Point:** 137 - 140C (279 - 284F) **Melting Point:** -25C (-13F) Vapor Density (Air=1): 3.7 Vapor Pressure (mm Hg): 8 @ 20C (68F) Evaporation Rate (BuAc=1): 0.7



### HAZMAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Lower # = higher hazard	I.T. = A.I.T. = (paper = 451° F)	
Solubility	Soluble (swims) in:	Soluble?
_		(Not, Somewhat, Very (W)
	🖬 Water (W) 🛛 Oil (O)	Not, Somewhat, Very (O)
Specific Gravity	Water = 1 (less floats, more sinks)	Liquid?
1 . 5.50	<b>S.G. =</b> <u>.86</u> 88	Float / Sink / Neither
Vapor	Air = 1 (less rises, more sinks)	Vapor?
Density	<b>V.D. = </b> <u>3.7</u>	Float / Sink / Neither
Vapor Pressure	Water @ 17.5 mmHg (0.33 psi) = Low $1 \text{ DDM} = 4.34 \text{ Mg/M}^3$	Vapor Production?
Higher = more vapor Lower = less vapor	mmHg 279-284 F	Low, Medium, High
Lower B P = more vapor	B.P. =	

# Vapor Pressure



## **Converting Pressures**

- 760 mm Hg = 760 torr
- 1 atm = 760 mm Hg
- 1 atm = 101.3 kPa
- 760 mm Hg = 101.3 kPa
- Converting Pressures:
  - Convert 740 torr to kPa
    - 740 torr (current pressure) x 101.3kPa (1 atm in kPa) /760 torr (atm in torr)
    - (740)(101.3kPa /760)
    - 740/760 is the fraction of 1 atm in torrs.
  - Convert 2 atm to mm Hg
     2 atm (760 mm Hg/1 atm)

Key Point: A product with a high vapor pressure evaporates quickly, sending the vapors up unto the air or builds pressure in a container.



Strong oxidizers, strong acids

#### Exposure Routes

inhalation, skin absorption, ingestion, skin and/or eye contact



9. Physical and Chemical Properties
The following physical data is for xylene.
Appearance:
Clear, colorless liquid.
Odor:
Characteristic odor.
Solubility:
Insoluble in water.
Specific Gravity:
0.86 @ 20C/4C



## [M]SDS pH: Not applicable. Not applicable. % Volatiles by volume @ 21C (70F):100 **Boiling Point:** 137 - 140C (279 - 284F) **Melting Point:** -25C (-13F) Vapor Density (Air=1): 3.7 Vapor Pressure (mm Hg): 8 @ 20C (68F) Evaporation Rate (BuAc=1): 0.7



## ATSDR Medical Management Guidelines

**Physical Properties** 

**XYI FNF** 

- **Description: Clear, colorless liquid**
- Warning properties: Adequate; sweet, aromatic odor at 1 ppm
- Molecular weight: 106.2 daltons
- Boiling point (760 mm Hg)*: 292ºF (144ºC), 269ºF (139ºC), and 281ºF (138ºC)
- Freezing point*: -13°F (-25°C), -54°F (-48°C), and 56°F (13°C)
- Specific gravity*: 0.88, 0.86, and 0.86 (water = 1)
- Vapor pressure*: 5, 6, and 6.5 mm Hg at 68°F (20°C)
- Gas density: 3.8 (air = 1)
- Water solubility: insoluble
- Flammability*: 63ºF (17ºC), 81ºF (27ºC), 81ºF (27ºC)

Flammable range: 1.0% to 7.0% (concentration in air) *ortho-, meta-, and para-xylene, respectively.





CH4



-<u>What the construction of the construction of</u>

# **Corrosive Material**



- Corrosives are materials that can attack and chemically destroy exposed body tissues. Corrosives can also damage or even destroy metal.
- Two categories
  - Acids
  - Bases (Alkaline)
- Measured by the pH



"Hydrofluoric acid won't eat through plastic. It will, however, dissolve metal, rock, glass, ceramic. So there's that."

—Walter White to Jesse Pinkman.

## Interesting Point: At Iron Mountain, the acid mine drainage has a negative pH





H2SO4-36M Tons annually in US NaOH 14M Tons





#### HAZMAT FOR HEALTHCARE HARM / Risk Assessment Worksheet



Vapor Pressure 1 atm= 760mmHg= 760 Torr= 101.3 kPa= 14.7 psi



# Flammability

# IDHA - Acronyms and Terms

## • LEL and UEL

- Lower Explosive Limit/ Upper Explosive Limit
- FR and FL
  - Flammable Range/Flammable Limit











# Explosive/Flammable Range

Vapor to Air concentrations that ignite/burn



Can the atmosphere still be dangerous below the LEL or above the UEL?



## Flammable Range





# Flammable Range





Key Point: The greater the flammable range the greater the hazard



# IDHA - Acronyms and Terms







- FP Flash Point
  - The temperature at which the liquid phase gives off enough vapor to flash when exposed to an external ignition source. [Gasoline = minus 40° F/C]
- IT Ignition Temperature/Fire Point
  - The temperature at which a liquid is capable of sustained fire with an external ignition source. [Gasoline = minus 35° F]
- AIT Auto-Ignition Temperature
  - The temperature at which a mixture of flammable vapor and air would ignite without a spark or flame. (It is always a higher temperature than the Ignition Temperature) [Gasoline = 536° F and Paper = 451° F]

## Key Point: The term "point" often refers to temperature.



## NIOSH Pocket Guide to Chemical Hazards

XYLENE

NIOSH REL : TWA 100 ppm (435 mg/m ³ ) ST 150 ppm (655 mg/m ³ ) OSHA PEL <u>†</u> : TWA 100 ppm (435 mg/m ³ )					NIOSH <u>1501</u> , <u>3800</u> ; OSHA <u>1002</u> See: <u>NMAM</u> or <u>OSHA Methods</u>		
Physical Descripti Colorless liquid w	on ith an aromatic odor.						
MW: 106.2	BP: 283/5	FRZ:	Sol: Slighte		VP: 9 mmHg	IP: 8.56 eV	
Sp.Gr: 0.86	FI.P: 82°F	UEL: 7.0%	LEL: 1.1%				
Class IC Flammabl	e Liquid. Pl.P. at or above 7	3"F and below 100"F.	*****				
Incompatibilities Strong oxidizers, s	& Reactivities trong acids						
Exposure Routes							



## **Xylene- Fire:**

Flash point: 29C (84F) CC Autoignition temperature: 464C (867F) Flammable limits in air % by volume: lel: 1.0; uel: 7.0



Key Point: For flammable liquids, the liquid does not burn. The vapors above the liquid can burn if within the flammable range and above the flash point



# Flammability







Flammability*: 63°F (17°C), 81°F (27°C), 81°F (27°C) Flammable range: 1.0% to 7.0% (concentration in air) *ortho-, meta-, and para-xylene, respectively.

From ATSDR MMG


### Filled out HARM Worksheet

HAZ MAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Product Name: XYLENE UN# (4 digits) 1307

DOT Hazard Class Category: <u>3 (flammable liquid)</u> Physical State: <u>liquid</u> 1 to 9 (at 68 degrees F) <u>Solid/Liquid/Gas</u>

ERG Guide #_____130_____ NFPA: H 2__ F 3__ R 0__ S___ (0-4)

Hazard	Physical Description	Hazard Summary
<b>Toxicity</b> Lower #'s and/or Narrow Range = higher hazard	ppm <u>100 150 900</u> or	Toxicity? Little, <mark>Somewhat</mark> , Very
Closer to 1 or 14 =	Acid 1-6 Base 8-14 pH_n/a	Corrosive? Not, Somewhat, Very
Flammability Lower #'s and/or Wider Range = higher hazard	LEL / UEL: 0% 50% 100% Flashpoint: 63 90 100 °F	Flammable? Non, <mark>Somewhat, Very</mark>
Lower # = higher hazard Vapor	I.T.:867 Air = 1 (less rises, more sinks)	Vapor?
Density	V.D.:	Float / Sink
Specific Gravity	Water = 1 (less floats, more sinks) S.G.:0.86	Liquid?
Solubility	Soluble (swims) in:	Soluble? Not Somewhat Very (W) Not Somewhat Very (O)
Vapor Pressure Higher = more vapor, Lower = less vapor	1 atm = 760 torr (mmHg) = 14.7 psia Atm <u>8</u> mmHg e.g., At 17°C H ₂ O=14.5 mmHg, Diethyl Ether = 335.6 mmHg (Higher temperature= higher VP)	Vapor Production?
Carcinogen	Yes / No	Cancer risk to staff? Yes / No
Secondary Cor	ntamination Risk: Yes / No	
PPE: 0	Can your team handle a decontamination incident with prov Yes / No Can your team handle an internal spill incident with provide Yes / No Not sure	ided PPE? d PPE?
Other Info of in	terest: CNS depressant, narcotic effect	

What challenges are there to you handling this? <u>Could be flammable in</u> some circumstances

### Result: Clarity or Mental V-Fib? Bringing it Together

- Small Group Activity
  - Same resources, different chemicals
    - Ammonia, Parathion, Formaldehyde/Formalin, Phenol, Mercury, Hydrogen Chloride
  - Groups are instructed as being assigned as part of the Technical Specialist and Assistant Safety Officer team
    - Contaminated victims due to arrive in 20 minutes
    - Tasked with researching the chemical and reporting to the Victim Decon Team what are the important things to know for a safe and effective response

#### HAZ MAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Product Name:	Formalin UN# (4 dig	UN# (4 digits) 2209	
DOT Hazard Class Category: <u>6 Poison</u> Physical Stat 1 to 9 (at 68 degrees 1		itate: <u>Liquid</u> es F) Solid/Liquid/Gas	
ERG Guide #	132 NFPA: H 2_ F	<u>2 R 0 S (0-4)</u>	
Hazard	Physical Description	Hazard Summary	
Toxicity Lower #'s and/or Narrow Range = higher hazard	Ppm     .75     2       or	Toxicity? Little, Somewhat, <u>Very</u>	
Closer to 1 or 14 =	Acid 1-6 Base 8-14	Corrosive? <u>Not</u> , Somewhat, Very	
Flammability Lower #'s and/or Wider Range = higher hazard	LEL / UEL: 7	Flammable? % Non, <u>Somewhat</u> , Very (High flash point)	
Lower # = higher hazard	Flashpoint: 185 0°F 100 °F 200 I.T.:	۴	
Vapor Density	Air = 1 (less rises, more sinks) V.D.:1.09 (see below)	Vapor? Float / Sink	
Specific Gravity	Water = 1 (less floats, more sinks) S.G.:_~1 (see below)	Liquid? Float / Sink	
Solubility	Soluble (swims) in: x□ Water (W)  □ Oil (O)	Soluble? Not Somewhat <u>Very (</u> W) Not Somewhat Very (O)	
Vapor Pressure Higher = more vapor, Lower = less vapor	1 atm = 760 torr (mmHg) = 14.7 psia Atm~14.5_mmH e.g., At 17°C H ₂ O=14.5 mmHg, Diethyl Ether = 335.6 mmHg (Higher temperature= higher VP)	Hg Vapor Production? Low, <u>Medium</u> , High	
Carcinogen	<u>Yes</u> / No	Cancer risk to staff? Yes / No	
Secondary Cor	ntamination Risk: <u>Yes</u> / No		
PPE: 0	Can your team handle a decontamination incident with p <u>Yes</u> / No Can your team handle an internal spill incident with pro Yes / <u>No</u>	provided PPE? vided PPE?	
Other Info of interest: Irritant CARCINOGEN 3-4% formaldehyde, 1-1.5 methyl alcohol, water; evaporates like water, vapors mix easily in air, liquid mix easily in water			

What challenges are there to you handling this? Spills over a small amount (100 ml) with vapor generation require emergency response w/respiratory protection.

#### HAZ MAT FOR HEALTHCARE HARM / Risk Assessment Worksheet

Product Name:       Phenol (Carbolic Acid)       UN# (4 digits)       2821         DOT Hazard Class Category:       6 Poison       Physical State:       liquid         1 to 9       (at 68 degrees F)       Solid/Liquid/Gas				
ERG Guide # <u>153</u> NFPA: H <u>4</u> F <u>2</u> R <u>0</u> S		5 (0-4)		
Hazard	Physical Description	Hazard Summary		
<b>Toxicity</b> Lower #'s and/or Narrow Range = higher hazard	ppm <u>5 15.6 250</u> or IDLH mg/cm ³ TWA STEL C IDLH 8 Hrs Short Ceiling Danger	Toxicity? Little, Somewhat, <u>Verv</u>		
Closer to 1 or 14 = corrosive	Acid 1-6 Base 8-14	Corrosive? Not, Somewhat, Very		
Flammability Lower #'s and/or Wider Range = higher hazard Lower # = higher	LEL / UEL: 0% 1.75-8.6 50% 100% Flashpoint: 0°F 100 °F <u>175</u> 200 °F I.T.: 715C	Flammable? Non, <u>Somewhat</u> , Very		
Vapor Density	Air = 1 (less rises, more sinks)	Vapor? Float / Sink		
Specific Gravity	Water = 1 (less floats, more sinks) S.G.:1.06	Liquid? Float / Sink		
Solubility	Soluble (swims) in: □ Water (W) x□ Oil (O)	Soluble? Not <u>Somewhat</u> Very (W) Not Somewhat <u>Very</u> (O)		
Vapor Pressure Higher = more	1 atm = 760 torr (mmHg) = 14.7 psia <b>Atm.36mmHg</b> e.g., At 17°C H ₂ O=14.5 mmHg, Diethyl Ether = 335.6 mmHg	Vapor Production?		

Cancer risk to staff?

Yes / No

Other Info of interest: Irritant, poison, especially skin absorption

What challenges are there to you handling this?

Secondary Contamination Risk: Yes / No

Higher = more

vapor, Lower = less vapor

Carcinogen

PPE:

C HAZ MAT FOR HEALTHCARE HARM-Risk Assessment Worksheet

(Higher temperature= higher VP)

Yes / No

Can your team handle a decontamination incident with provided PPE? Yes / No Can your team handle an internal spill incident with provided PPE? Yes / No



# Groups Report Out

- Instructor provides further information on chemical and compares and contrasts hazards and risks, e.g.,
  - Which is the most toxic?
  - Which is the most flammable?
  - Why do some have no pH?
  - Which is less flammable on a cool morning than a hot afternoon?
  - If I have a monitoring device, which vapors would be found on the ground or by the ceiling?
  - If I'm taking a drum sample which would be found on the bottom or top of the drum?
  - What about discrepancies between resources?

# Light goes on (hopefully)!





Back to the Small Group Activity...

Determine what is important to convey

Report back

Sulfuric Acid	
Propylene	
Sodium Hydroxide	
Sodium Carbonate	WHY THESE CHEMICALS?
Ammonia	
Benzene	
Ethylene Oxide	
Formaldehyde	
Methanol	



# Groups Report Out

- Instructor provides further information on chemical and compares and contrasts hazards and risks, e.g.,
  - Which is the most toxic?
  - Which is the most flammable?
  - Why do some have no pH?
  - Which is less flammable on a cool morning than a hot afternoon?
  - If I have a monitoring device, which vapors would be found on the ground or by the ceiling?
  - If I'm taking a drum sample which would be found on the bottom or top of the drum?
  - What about discrepancies between resources?





What challenges are there to you handling this? _____



# By the End of This Presentation, Attendees will be able to:

Identify	Identify the HARM worksheet and its component parts $\mathcal{D}_{\mathcal{O}}$
Assess	Assess the application of the HARM worksheet in a training setting
Demonstrate	Demonstrate the use of the HARM worksheet



## VISION CONSORTIUM

#### Thanks!

Paul Penn President Global Vision Consortium www.Globalvisionconsortium.com Paul.penn@gvc1.com paul@enmagine.com 916-718-0751 (m)

