## Rethinking Health Outcomes Exploration in Pesticide Epidemiology

Melissa Furlong, PhD

March 9, 2022

NIEHS P30 Early Stage Investigator Webinar Series

### Pesticides



- Pesticides are a broad category
  - Insecticides, herbicides, fungicides, termiticides, bactericides, acaricides, miticides, rodenticides
  - Exposure routes: diet, agricultural drift, residential & occupational use











### Insecticides Display Wide-Ranging Toxicity



Rising Relevance of Pyrethroids: Animation of pesticide applications in Yuma county, 1992-2020

1992: mix of orange (OPs) and blues (pyrethroids)

2019: mostly transitioned to blues (pyrethroids)



## Pyrethroid Targets

- Designed as Sodium Channel Modulators
  - Brain and Central Nervous System
    - Central, peripheral neurons, glial cells, dorsal root ganglion cells
    - Epilepsy, seizures, pain, Autism Spectrum Disorder, brain malformations, migraine, fibromyalgia
  - Heart
    - Brugada Syndrome, atrial fibrillation
  - Skeletal muscle
    - Paralysis, myotonia, ataxia, dystonia
  - Uterus
  - Gastrointestinal cells
    - Irritable bowel syndrome
- Pyrethroids also modulate Other Ion Channels
  - Calcium, Potassium







# The Case for an Untargeted Outcomes Approach

- Pyrethroid targets have broad biological relevance
- Epidemiology studies show wide range of associated health outcomes
- Untargeted studies can generate hypotheses for novel health targets



# Epigenome-Wide Association Study of Pyrethroid Exposure in California

- Controls from a case-control study of Parkinson's disease in California, PEG1 (PI Ritz)
  - Study Sample: PEG1 controls (n=237)
  - Recruited 2001-2007 from three counties in Central CA
  - Restricted to Non-Hispanic Whites and those of Hispanic ethnicity
- Exposure: Pyrethroid Pesticides
  - Pesticide Use Registry
  - Pounds of active ingredient within 500m of residence
    - 5 year averages for each pyrethroid pesticide at enrollment
    - We used binary variable to indicate exposure to any pyrethroid at >median levels for the study sample



Figure of pesticide distribution for PEG study from Paul et al, in prep

# Epigenome-Wide Association Study of Pyrethroid Exposure in California

#### Methylation

- Untargeted study of differential methylation
  - Peripheral whole blood samples at enrollment
- Illumina 450k methylation chip
  - Methylation:
    - CpG sites are either methylated or unmethylated (0 or 1), varies by cell
    - Groups of cells are lysed and have a percent methylated (from 0 to 1)
  - Cleaning/Filtering:
    - Filtered out cross-reactive probes, Normalized for type1/type2 probe bias with BMIQ
    - Assessed for batch effects with SVA
  - Total sites assessed = 446,571 (filtered out about 40,000 sites)

#### **Analysis**

- Beta Regression
  - Bounded values between 0 and 1
  - Control for education, age, sex, Hispanic ancestry, blood cell composition (Houseman method)
  - FDR q<0.05
- Pathway Analysis
  - Overrepresentation analysis (GO) for CpG sites at p<0.05</li>
  - Overrepresentation analysis of diseases (Webgestalt's OMIM and GLAD4U databases) for genes annotated to CpG sites at p<0.05</li>

#### Demographic characteristics of the study participants (N = 237).

| Characterstics                               | Study Participants |
|----------------------------------------------|--------------------|
| Age (mean, sd)                               | 67.4 (12.8)        |
| Sex (n, %)                                   |                    |
| Male                                         | 126 (53.2)         |
| Female                                       | 111 (46.8)         |
| Ethnicity                                    |                    |
| Non-Hispanic White                           | 218 (87.3)         |
| Hispanic White                               | 19 (12.6)          |
| Hispanic Ancestry Markers (mean, sd)         | 0.07 (0.17)        |
| Pyrethroid Exposure                          |                    |
| < Median for All Pyrethroids in Past 5 Years | 192 (81.0)         |
| > Median for Any Pyrethroid in Past 5 Years  | 45 (19.0)          |
| Organophosphate Exposure                     |                    |
| < Median for All OPs in Past 5 Years         | 164 (69.2)         |
| > Median for Any OP in Past 5 Years          | 73 (30.8)          |

## Results- Associated CpG Sites & GO pathways

#### Manhattan Plot for CpG Sites



#### **Associated CpG Sites**

| CpG Site   | Exp  | ΔΡ    | Р      | FDR q | Gene   | Gene Description         |
|------------|------|-------|--------|-------|--------|--------------------------|
|            | (8)  |       |        |       |        |                          |
| cg18234533 | 1.08 | 0.06  | 3.6e-9 | <0.01 | FAM20C | Calcium Ion Binding      |
| cg12459932 | 1.04 | 0.03  | 5.8e-8 | 0.01  | RUNX3  | Tumor suppressor,        |
|            |      |       |        |       |        | transcription, Notch     |
|            |      |       |        |       |        | signaling, dysplasia     |
| cg26578373 | 0.76 | -0.05 | 1.6e-7 | 0.02  | PIN4   | Cell cycle, mitochondria |
| cg10065825 | 0.70 | -0.04 | 2.9e-7 | 0.03  | CDH11  | Calcium ion binding      |

#### Associated GO pathways

| Ontology | Term                         | N    | DE   | P.DE    | FDR     |
|----------|------------------------------|------|------|---------|---------|
| CC       | membrane                     | 1853 | 1313 | 8.0E-08 | 7.0E-04 |
| CC       | nucleoplasm                  | 3123 | 2164 | 1.4E-06 | 7.9E-03 |
| CC       | cytosol                      | 4871 | 3288 | 1.3E-05 | 3.9E-02 |
| MF       | protein binding              | 9664 | 6483 | 2.0E-12 | 3.6E-08 |
| MF       | ATP binding                  | 1451 | 1041 | 4.0E-06 | 1.8E-02 |
| MF       | transcription factor binding | 264  | 213  | 5.3E-06 | 1.9E-02 |

### Diseases



These plots show the Enrichment ratios and -log10 p values of disease gene sets from the OMIM database (left) and GLAD4U database (right). These sets are overrepresented at an FDR q<0.05 level, in the list of genes annotated to CpG sites that are associated with pyrethroid exposure at a raw p<0.05 (n=32,695 CpG sites, annotating to 5,782 unique gene names), using BMIQ normalization. The size of the markers indicates the relative size of the gene sets.

Furlong et al 2020 IJHEH

## Summary of Pyrethroids EWAS

- Findings Support & Extend Literature
- Some findings highly consistent with prior literature
  - Ion binding (calcium vs sodium)
  - Membrane action
- Some findings consistent with targets, but understudied in epidemiology
  - Musculoskeletal abnormalities, Headaches, Mental Disorders, obesity/leanness, Mitochondrial Complex I Deficiency
- Some are understudied/novel across fields
  - Prostate Cancer, Alzheimer's disease, Diabetes
- Differential methylation can paint a picture of sub-acute, non-clinical phenotypes

#### Pyrethroid Targets

- Designed as Sodium Channel Modulators
  - Brain and Central Nervous System
    - Central, peripheral neurons, glial cells, dorsal root ganglion cells
  - Epilepsy, seizures, pain, Autism Spectrum Disorder, brain malformations, migraine, fibromyalgia
  - Heart
  - Brugada Syndrome, atrial fibrillation
  - Skeletal muscle
  - Paralysis, myotonia, ataxia, dystonia
  - Uterus
  - Gastrointestinal cells
    - Irritable bowel syndrome
- Pyrethroids also modulate Other Ion Channels
  - Calcium, Potassium





### Assumptions

- Differential methylation is biologically significant
- Differential methylation is meaningful for the annotated gene
- P-values are a relevant indicator
- Specific pyrethroids have equivalent mechanisms of action & toxicity
- Time window of exposure is relevant (5 years before blood draw)
- Subclinical disease indications at the molecular level translate to chronic disease implications at population levels

## Rich Arizona-Specific Resources for Hypothesis Testing

- From hypothesis generation to hypothesis testing: Challenges
  - Rare outcomes require big data or is \$\$\$
  - Pesticide biomarker measurement is \$\$\$
    - Retrospective assessment using biomarkers is usually impossible
- Arizona's resources:
  - Statewide pesticide use registry (PUR) 1992-present
  - University and State-wide support for population research
    - Medicaid, birth certificates, cancer registries, birth defects registries, EMRs, hospital admissions data

- Goals:
  - Use extant resources to link >2million pesticide applications from 1992-present with available health records in AZ (birth certificates, Medicaid, registries)
  - This will allow:
    - Deep dives into specific pesticides
    - Research into sensitive windows
    - Untargeted outcomes research
    - Mixtures research
    - Others
- Sneak peek: birth certificates linkage
   & power to evaluate rare outcomes

## Arizona's Pesticide Use Registry & Birth Certificates

- Comparative analysis of pesticides during pregnancy with extremely preterm birth (<28 weeks)</li>
- Linked AZ pesticide applications to births from 2011-2016
- Binary exposures for living within 500m of a pesticide application, by trimester & pre-conception (90 days prior to LMP)
- Restricted to births in agricultural zones
- Logistic regressions of pesticides by trimester with extremely preterm birth
  - Controlled for maternal race/ethnicity, child sex, maternal education, birth year
- FDR adjustment



## Key Characteristics

- ~11% births from 2011-2016 lived near an actively used agricultural field
- In agricultural areas, <1% of births were extremely preterm (<28 weeks)
- >150 unique active ingredients were applied >250 times over this time period



Random Snapshot of 10,000 Pyrethroid Pesticide Applications, Arizona

## Unpublished data – not for reproduction

## Summary

- Implicated new/understudied and familiar pesticides
- New windows of sensitivity
  - Pre-conception appears important
- Able to study a rare birth outcome (<1% of births) & rare exposures</li>
  - Caveat that cell counts for exposed cases tended to be small

## Acknowledgments

- University of Arizona
  - Paloma Beamer
  - Al Fournier
  - Peter Ellsworth
  - Kimberly Parra
  - Celia Ritter
  - Vern Pilling
- UCLA
  - Beate Ritz
  - Kimberly Paul
  - Myles Cockburn

- Arizona Department of Health Services
- Funders
  - NIEHS R00ES028743
  - NIOSH Western Center for Agricultural Health and Safety 2U54OH007550

## Thank you!