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The role of Al in toxicology

- Al should help basic toxicologists by:

- Predicting new associations between chemicals and

endpoints of toxicity

- Explaining mechanisms that may underlie those

predictions

- It does not replace experimental validation; rather, it helps us

to focus our time and effort



Outhne

- ComptoxAl overview
- ComptoxAl: Data access and information retrieval

- ComptoxAl: GraphML to improve QSAR models



Outhne
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Toxicology

- Study of the adverse effects of chemicals on living organisms
- Environmental toxicology focuses on environmental exposures
- Occupational toxicology focuses on workplace exposures
- Can also focus on toxic effects of pharmaceutical compounds

- Predictive toxicology: Use of computational and statistical

techniques to predict (previously unobserved) toxic effects of
specific chemicals
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ComptoxAl: A modern toolkit for Al research in computational
toxicology

Stay tuned while we finish building this site!
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In the meantime, check out ComptoxAl's readme on GitHub: github.com/JDRomano2/comptox_ai.
owl:Thing
=N 0.5
PConcest [ e e [ T [re— - ]
7%

P E——" - "'ns@__inchi': 'InChl=1S
— f : f 'ns@__xrefCosR
ComptoxAl provides:

/1 117 FAIF1EN1 201151 7N
W3/¢cl15-11-7-6-9(12(16)13(11)1/7)8
N' '6316-69-4"'
refDt
* A graph database for storing and retrieving data used in computational toxicology research (implemented in Neo4j)
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+ Algorithms for analyzing the structure of data stored in the graph database
+ A full-featured OWL ontology for computational toxicology (which is used to structure and query the graph database) a ' l n e e a r n I n g m 0 e S

+ This website, which includes a blog (coming soon) and showcase of research resulting from ComptoxAl
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https://comptox.ai

Data vs. Knowledge

- Data:

- Raw observations
- Often (usually?) quantitative

- E.g., specific gene expression measurements

- Knowledge:

- Meaningful understanding of phenomena
- Often results from analysis of many points of data
- Typically represents

- E.g., “"Chemical [X]| upregulates expression of gene [Y]’
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ComptoxAl: A modern toolkit for Al research in computational toxicology
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Browse ComptoxAl data

A graph database for storing and retrieving data used in computational toxicology research (implemented in Neo4))
Algorithms for analyzing the structure of data stored in the graph database

A full-featured OWL ontology for computational toxicology (which is used to structure and query the graph database)
This website, which includes a blog and showcase of research resulting from ComptoxAl

(Coming soon:) A gallery of machine learning models for making scientific discoveries from ComptoxAl data

ComptoxAl provides:
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Displaying 65 nodes, 153 relationships.




Entity type n

Chemical 780,037
Gene 62,407
Pathway 4,570
Key Event 1,111
—» Chemical List 311
—» Adverse Outcome Pathway 280
Molecular Initiating Event 193
Adverse Outcome 156

Assay 68
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ComptoxAl - An artificial Intelligence
@) JDRomano2 Incremental update on QSAR dataset graphical query builder. ed97907 18 days ago YY) 423 commits toolkit for computational toxicology

& comptox.aif

.github/workflows Merge branch 'master' of https://github.com/JDRomano2/comptox_ai 8 months ago

vscode Hook up app to redux 7 months ago data ai neo4j ontology

graph-database phenotypes diseases

comptox_ai Incremental update on QSAR dataset graphical query builder. 18 days ago
graph-machine-learning
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Readme
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MIT License
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tests Fix circular imports for type hinting in comptox_ai.db 2 months ago 1 watching
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.gitignore Make basic component layout for data browser 7 months ago on Jul 1, 2021
CONFIG-default.yaml Debug for running on Ubuntu 7 months ago
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- ComptoxAl: Data access and information retrieval



ComptoxAl: Data Interfaces

- Data browser / dataset generator tools on website
- Direct access to graph database (local or remote)
- Web API (Programmatic access to data)

- Python package (Access data and construct machine learning
models from the Python programming language)



ComptoxAl interactive data portal

From this page, you can search for individual entities (nodes) in ComptoxAl's graph database.
When you select a query result, adjacent nodes (related data elements) are loaded and displayed
below.

For detailed usage instructions, please see this page.

Nodes

Search ] LOAD EXAMPLE QUERY

Node Type
Gene -
Node Field
Gene Symbol v

Value

CYP2ET

SEARCH CLEAR FORM

Search Results

CLEAR NODE SEARCH RESULTS

Node details: [y CoPY JsoN

EE® cytochrome P450 family 2 subfamily E

member 1

External Identifiers: Other node features:
Database Identifier Feature name Value
OMIM ID 124040 typeOfGene protein-coding
HGNC ID 2631 geneSymbol CYP2E1
Ensembl ID ENSGO0000130649
NCBI Gene ID 1571

Ontology IRl: http://jdr.bio/ontologies/comptox.owl#gene cyp2el

" LOAD RELATIONSHIPS ‘ ’ PATH START NODE | PATH END NODE




@ Swagger Ul

C (Y @& comptox.ai/api/help/

@ Swagger.

supported by SMARTBEAR

ComptoxAl REST AP| €2

A REST Web API providing programmatic access to ComptoxAl's graph database.

Servers

https:/comptox.ai/api - ComptoxAl's public REST APl v

nodes v

/nodes/listNodeTypes Get a list of all node types in ComptoxAl

/nodes/listNodeTypeProperties/{type} Get alistof properties defined for a particular node type

Q)
IT

/nodes/{type}/search Search for a node using string matching on a specific field

{
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/nodes/{type}/searchContains Search for a node where a certain field contains a query string

GET /nodes/fetchById/{id} Fetch a single node using its Neo4j ID

GET /paths/findByIds Use a start node ID and end node ID to retrieve a shortest path connecting those nodes




Curl

curl -X GET "https://comptox.ai/api/nodes/1listNodeTypeProperties/Chemical” -H "accept: */*"

Request URL

https://comptox.ai/api/nodes/listNodeTypeProperties/Chemical

Server response

Code Details

200 Response body

"property”: "commonName",
"type": "STRING"

"property"”: "maccs",
Iltypell : llLISTIl

"property”: "xrefMeSH",

"type": "STRING"

"property"”: "xrefDrugbank",
"type": "STRING"

"property"”: "xrefPubchemSID",
"type": "STRING"

property": "xrefDTXSID", B

n type n : n STRI NG n Download

Response headers

access-control-allow-credentials: true

access-control-allow-headers: Origin,X-Requested-With,Content-Type,Accept,Authorization
access-control-allow-methods: GET,HEAD,OPTIONS,POST,PUT,DELETE
access-control-allow-origin: *

connection: keep-alive
content-length: 372
content-type: application/json; charset=utf-8
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IR Tools

“Shortest Path' - Identifies the most direct mechanistic routes

linking two (or more) entities

"Expand Network' - Shows an entity in the context of a

network of nearby ‘neighbor’ entities

"QSAR Dataset Generator' - Dynamically builds tabular

datasets for predicting a toxic endpoint using fingerprints for a
list of chemicals
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Important Caveats

- Information retrieval is limited to what we already know and
what is already in the source databases

- Advanced users might get more mileage (e.g., by constructing
graph queries by hand)

- New ‘entry-level’ features will be continuously in
development!

- Running complex queries can be (a little bit) slow
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- ComptoxAl: GraphML to improve QSAR models



> Pac Symp Biocomput. 2022;27:187-198.

Improving QSAR Modeling for Predictive Toxicology
using Publicly Aggregated Semantic Graph Data and
Graph Neural Networks

Joseph D Romano ', Yun Hao, Jason H Moore

Affiliations + expand
PMID: 34890148 PMCID: PMC8714189
Free PMC article




QSAR

Goal QSAR
Structure \ ® Fingerprints: binary nn-
X = [T1,T2,...,Tp]
| < 3 oxygens? S-S bond?
Model: y ~x ® Descriptors: continuous -

Toxicity / / l \

MW  Log P #Rings

- QSAR: Quantitative Structure-Activity Relationship
Slide credit: Yun Hao



(Artificial) Neural Networks

- Consist of nodes organized into layers, which are usually stacked

- Deep learning —> NN with tens or hundreds of layers

Input Hidden Output
layer layer layer

Input #1 —

<7
Input #2 — %]
O‘yV ‘ > — Qutput
S
Input #3 1 /0
e
Input #4 —




Graph Neural Networks




Graph Neural Networks
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QSAR Subgraph

Genes
(n=24,376)

(assayTargetsGene)

(geneInteractsWithGene)



GNN Pipeline

'Node features
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QSAR Pertormance
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Potential for model

explainability

- Each relationship in the graph conveys semantic meaning based on node
types and relationship types

- For any given assay's GNN, edge weights are proportional to their
influence on the final prediction

- Example: HepG2 cell viability assay activity prediction

- Top weighted “other’ assays:
- HepG2 Caspase-3/7 mediated cytotoxicity
- NIH/3T3 Sonic hedgehog antagonism

- The first makes obvious sense; is there a mechanistic explanation for
the other?



Future work

- Expand on the concept types included in the subgraph (i.e., add diseases,
pathways, cell types, etc.)

- Test continuous endpoints (1Cso, etc.)

- Evaluate more complex network architectures:

- Link prediction models

- Use regularization to better utilize information from non-Assay nodes
(important for Graph ML in heterogeneous networks)

- Deeper networks? May be useful as the network grows

- Develop easy-to-use graphical tools to lower the barrier for diverse user types

- Use ontology reasoning to further improve explainability



- Let us know if you use ComptoxAl in your research! We

will be happy to give you a plug on our website.

- joseph.romano@pennmedicine.upenn.edu

- We're always happy to take suggestions, questions, and
contributions (data, code, documentation, etc.)

- Check back in a few weeks for a more complete feature set
including everything described in this talk (and more!)


mailto:joseph.Romano@pennmedicine.upenn.edu
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Additional slides:



Tox21 screening dataset

- Tox21: "Toxicology in the 21st
Century’ dataset for high-throughput
chemical screening

- 760 specific toxicology-focused
biochemical assays

- 78,000 chemicals evaluated on
those assays

Target Category

Develop...
5.9%

Counter
Screen

4.4%
Cytotoxi...

8.8%
Gene Tox

¢ Used in Tox21 Challenge

Protocol Name
tox21-ahr-p1 7%
tox21-ap1-agonist-p1
tox21-ar-bla-agonist-p1 7%
tox21-ar-bla-antagonist-p1
tox21-are-bla-p1 7%

tox21-ar-mda-kb2-luc-agonist-p1 v¥

Assay Target

AhR

AP-1 agonist

AR-BLA agonist

AR-BLA antagonist

ARE

AR-MDA agonist

Species / Tissue Type

Murine
embryo
fibroblast
7.4%
Cervical
Cancer

10.3%
Breast
Cancer

7.4%
Colon
Cancer

2.9%
Ovarian
5.9%
Hamster
5.9%

Liver
13.2%

41.2%

Target Category Cell Line Cell Type

NR HepG2 Liver

SR ME-180 Cervical Cancer
NR HEK293 Kidney

NR HEK293 Kidney

SR HepG2 Liver

NR MDA-MB-453 Breast Cancer




Node classification

labeling algorithm

- To build a training dataset for a single assay:

- Look at the edge linking each chemical to the assay of interest
- If edge is “chemicalHasActiveAssay", label the chemical “1"
- If edge is “"chemicalHaslnactiveAssay", label the chemical 0"
- If there is no edge, don't label the chemical

- Remove the node (and incident edges) for the assay of interest
to prevent information leakage



GCN Architecture details

Each layer of the network is defined as an edge-wise aggregation of adjacent nodes:

p = o (Z DieNT (W,Sl—1>h§.“” + Wél‘”h,ﬁl‘”)) . (A.1)
reR

where h! is the hidden representation of node i in layer I, A'(4) is the set of immediate neighbors

of node 4, and o is a nonlinear activation function (either softmax or leaky ReLU, as explained

in Appendix B). p can be any differential ‘reducer’ function that combines messages passed

from incident edges of a single type; in the case of this study we use summation. Since our

graph contains relatively few edge types, regularization of the weight matrices W is not needed.

(See paper for more details)



Node Classification details

For classifying chemicals as active or inactive with regards to an assay of interest, we stack 2
GCN layers in the form given by (A.1), with a leaky ReLU activation between the two layers
and softmax applied to the second layer’s output. Since we only classify chemical nodes, we
ignore outputs for all other node types (and for chemicals with undefined labels); labels are
generated via Algorithm 1 We train the network by minimizing binary cross-entropy between
the network’s softmax outputs and true activity values:

== 0h") -mh? + (1 -£h)) - In@1 - h). (B.1)
€Y
where ) is the set of all labeled nodes, K(hgo)) is the true label of node i, and h§2) is the final
layer output of node i.

The relatively shallow architecture of the network allows us to optimize the model using

the Adam algorithm applied to the entire training data set, but the model can be adapted to
mini-batch training when appropriate or necessary.

(See paper for more details)
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