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The role of AI in toxicology 

- AI should help basic toxicologists by:

- Predicting new associations between chemicals and
endpoints of toxicity

- Explaining mechanisms that may underlie those
predictions

- It does not replace experimental validation; rather, it helps us
to focus our time and effort
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Toxicology 
- Study of the adverse effects of chemicals on living organisms

- Environmental toxicology focuses on environmental exposures

- Occupational toxicology focuses on workplace exposures

- Can also focus on toxic effects of pharmaceutical compounds

- Predictive toxicology: Use of computational and statistical
techniques to predict (previously unobserved) toxic effects of
specific chemicals
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Data vs. Knowledge 
- Data:

- Raw observations

- Often (usually?) quantitative

- E.g., specific gene expression measurements

- Knowledge:

- Meaningful understanding of phenomena

- Often results from analysis of many points of data

- Typically represents

- E.g., “Chemical [X] upregulates expression of gene [Y]”





 Adverse Outcome Pathway: 
Mitochondrial dysfunction and Neurotoxicity 



Entity type n 

Ch.mical 780,037 

Gene 62,407 

Pathway 4 570 

Key Event 1,111 

___. Chemical List 311 

___. Adverse Outcome Pathway 280 

Molecular Initiating Event 193 

Adverse Outcome 156 

Assay 68 
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ComptoxAI: Data Interfaces 

- Data browser / dataset generator tools on website 

- Direct access to graph database (local or remote) 

- Web API (Programmatic access to data) 

- Python package (Access data and construct machine learning 
models from the Python programming language) 











 

 

IR Tools 

- “Shortest Path” - Identifies the most direct mechanistic routes 
linking two (or more) entities 

- “Expand Network” - Shows an entity in the context of a 
network of nearby ‘neighbor’ entities 

- “QSAR Dataset Generator” - Dynamically builds tabular 
datasets for predicting a toxic endpoint using fingerprints for a 
list of chemicals 
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Important Caveats 

- Information retrieval is limited to what we already know and 
what is already in the source databases 

- Advanced users might get more mileage (e.g., by constructing 
graph queries by hand) 

- New ‘entry-level’ features will be continuously in 
development! 

- Running complex queries can be (a little bit) slow 
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Goal QSAR 

Structure • Fingerprints: binary 

x = [x1, x2, . . . , xp]
< 3 oxygens? S-S bond? 

Model: y ⇠ x • Descriptors: continuous 

0 1 0 … 

487 1.9 4 … 

Toxicity 
MW Log P #Rings 

- QSAR: Quantitative Structure-Activity Relationship 
Slide credit: Yun Hao 



 

(Artificial) Neural Networks 
- Consist of nodes organized into layers, which are usually stacked 

- Deep learning —> NN with tens or hundreds of layers 
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Graph Neural Networks 
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Graph Neural Networks 
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Graph Neural Networks 
- Layer 3: : Protein 

: Pathway 

: Tissue 

: Disease 



QSAR Subgraph 



GNN Pipeline 



QSAR Performance 



QSAR Performance 



Why do the GNNs perform so 
much better? 



 

 

 

 
 

 

Potential for model 
explainability 

- Each relationship in the graph conveys semantic meaning based on node 
types and relationship types 

- For any given assay’s GNN, edge weights are proportional to their 
influence on the final prediction 

- Example: HepG2 cell viability assay activity prediction 

- Top weighted “other” assays: 

- HepG2 Caspase-3/7 mediated cytotoxicity 

- NIH/3T3 Sonic hedgehog antagonism 

- The first makes obvious sense; is there a mechanistic explanation for 
the other? 



 

 

 

 

 

 

 

Future work 
- Expand on the concept types included in the subgraph (i.e., add diseases, 

pathways, cell types, etc.) 

- Test continuous endpoints (IC50, etc.) 

- Evaluate more complex network architectures: 

- Link prediction models 

- Use regularization to better utilize information from non-Assay nodes 
(important for Graph ML in heterogeneous networks) 

- Deeper networks? May be useful as the network grows 

- Develop easy-to-use graphical tools to lower the barrier for diverse user types 

- Use ontology reasoning to further improve explainability 



 

 

 

- Let us know if you use ComptoxAI in your research! We 
will be happy to give you a plug on our website. 

- joseph.romano@pennmedicine.upenn.edu 

- We’re always happy to take suggestions, questions, and 
contributions (data, code, documentation, etc.) 

- Check back in a few weeks for a more complete feature set 
including everything described in this talk (and more!) 

mailto:joseph.Romano@pennmedicine.upenn.edu
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Additional slides: 



 

 

Tox21 screening dataset 

- Tox21: “Toxicology in the 21st 
Century” dataset for high-throughput 
chemical screening 

- ~60 specific toxicology-focused 
biochemical assays 

- ~8,000 chemicals evaluated on 
those assays 



 

 

 

 

 

 

 

Node classification 
labeling algorithm 

- To build a training dataset for a single assay: 

- Look at the edge linking each chemical to the assay of interest 

- If edge is “chemicalHasActiveAssay”, label the chemical “1” 

- If edge is “chemicalHasInactiveAssay”, label the chemical “0” 

- If there is no edge, don’t label the chemical 

- Remove the node (and incident edges) for the assay of interest 
to prevent information leakage 



GCN Architecture details 

(See paper for more details) 



Node Classification details 

(See paper for more details) 
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