Mitochondriomic Approaches to Children's Environmental Health

Allison Kupsco, PhD
Environmental Health Sciences
Mailman School of Public Health
ak4181@cumc.columbia.edu

Mitochondria and mtDNA

- Cellular organelle in the cytosol of most nucleated cells
- Turn glucose into ATP (energy) process of oxidative phosphorylation
- Extra-nuclear genome
- Small Circular DNA:16,569 bp
- 37 genes
 - 13 for proteins (oxidative phosphorylation enzymes)
 - 22 for tRNAs
 - 2 for rRNAs
- Primary source of intracellular oxidative stress.

A Vicious Cycle

ROS: Reactive Oxygen Species

Environmental Mitochondriomics

Systematic investigation of the mtDNA and its regulation in response to environmental exposures

mtDNA Copy Number (mtDNAcn)

Low energetic demand

High energetic demand

Environmental Mitochondriomics

Systematic investigation of the mtDNA and its regulation in response to environmental exposures

mtDNA Heteroplasmy

Example: mtDNAcn in cord blood is associated with prenatal manganese (Mn) levels

Mn is an essential micronutrient that can be toxic at high levels

Blood Mn Measurement Time/Matrix

Associations of 2nd Trimester Mn by Maternal Anemic Status

Population by Hemoglobin and Ferritin Status

Kupsco et al., 2019

But – mtDNA in childhood can only be interpreted in the context of dynamic changes in mtDNA throughout our lives

mtDNA aging in human populations

Mitochondrial function ↓ with age.

mtDNA content in blood ↓ with age

Associated with age-related diseases: cardiovascular disease, cognitive decline, diabetes

But what about through childhood?

Study Goals

Characterize mtDNA copy number (mtDNAcn) trajectories from birth through adolescence

Determine maternal and child characteristics that associate with longitudinal mtDNAcn

mtDNA in the Columbia Center for Children's Environmental Health (CCCEH)

Enrolled 725 Pregnant Mothers of Dominican and African American descent.

Methods

Quantified whole blood relative mtDNAcn using qRT-PCR.

Calculated as the ratio of a mitochondrial gene to a nuclear gene expression.

Examined longitudinal mtDNAcn trajectories and with potential prenatal covariates with mixed effects models.

Examination of mtDNAcn at three timepoints in childhood

	Age	
Visit	(Years)	mtDNAcn
infancy	0	0.67 ± 0.35
childhood	5.39 ± 0.77	1.24 ± 0.50
teens	17.2 ± 1.48	1.13 ± 0.44

Impact of Storage Time?

No clear association with storage date across all visits. Only within cord blood

mtDNAcn Throughout Childhood

Each line and color corresponds to a single participant.

Black line is predicted association between age and mtDNAcn from mixed-effects models for age with natural splines.

I owest levels detected in cord blood.

Increases into childhood and remains relatively constant through to late adolescence.

Latent Class Trajectory Modeling identifies two mtDNAcn trajectories

Reference: High mtDNAcn

No differences in mtDNAcn by sex or race/ethnicity

Model Adjusted for Cell Types Unadjusted

Longitudinal mtDNAcn is associated with maternal factors

All models adjusted for child age at measurement and birth date

Cell type models are adjusted for cord blood DNA-methylation predicted cell-types:

Nucleated red blood cells, granulocytes, monocytes, B cells and CD8T cells

Birth outcomes are not associated with mtDNAcn in childhood

All models adjusted for child age at measurement and birth date.

Fully adjusted models additionally adjusted for:

Maternal school, maternal public assistance, Maternal age, child sex and cell type proportions

Next Steps

Investigate associations with childhood growth and environmental exposures

Measure heteroplasmy in same samples

P30 Pilot Award: Compare cellular to cell-free mtDNA content

Plasma mtDNA:

- Fragmented or whole in vesicles
- Originates from multiple target tissues
- Triggers inflammatory response
- Released from cell death

Buffy Coat mtDNA:

- Reflective of white blood cell response
- Highly dependent on immune cell type
- Changes with inflammation
- Easily measured

Conclusions

Mitochondria are:

• Relevant at a population level for public health

Mitochondriomics has Limitations:

- Challenges in interpretation of the direction of association
- mtDNAcn may not best reflect mitochondrial function

Acknowledgements

K99/R00 Mentors: Lab Help:

Julie Herbstman Baccarelli Lab

Andrea Baccarelli Tessa Bloomquist

Andrew Rundle Heng Hu

Jeff Goldsmith Deliang Tang

Dympna Gallagher

Figures made by A Kupsco with biorender.com

