All the Good Stuff is in the Appendix Appendicitis and Recent Temperature

Jacob Simmering, PhD

NIEHS Early Stage Investigator Webinar Series
Wednesday March 8 ${ }^{\text {th }}, 2022$

Acute appendicitis is a common cause of acute abdominal pain one of the most common general surgical emergencies occurs $\mathbf{> 2 5 0 , 0 0 0}$ per year in the US affects $7-8 \%$ of Americans during their lifetimes

Few well-documented risk factors

Age (most common 10-30)
Sex (slightly more common in males)
Diet (low fiber diets have higher risk)
Genetics
Decreased water consumption

Few well-documented risk factors

Age (most common 10-30)
Sex (slightly more common in males)
Diet (low fiber diets have higher risk)
Genetics
Decreased water consumption

Appendicitis is more common in the summer

Hypothesis:

Temperature is causally associated with appendicitis risk

Truven Health Analytics Marketscan
Commercial Claims and Encounters Database Medicare Supplemental and Coordination of Benefits Database

Truven Health Analytics Marketscan
Commercial Claims and Encounters Database Medicare Supplemental and Coordination of Benefits Database

Insurance claims for health care utilization for $\sim 200,000,000$ people with an mean enrollment duration of ~ 3 years

Find cases of appendicitis diagnosis in either inpatient or outpatient settings by ICD-9 and ICD-I0 diagnosis codes

ICD	Diagnosis	Long Description
9	540.0	Acute appendicitis with generalized peritonitis
9	540.1	Acute appendicitis with peritoneal abscess
9	540.9	Acute appendicitis without mention of peritonitis
9	541	Appendicitis, unqualified
9	542	Other appendicitis
10	K35.2	Acute appendicitis with generalized peritonitis
10	K35.3	Acute appendicitis with localized peritonitis
10	K35.80	Unspecified acute appendicitis
10	K35.89	Other acute appendicitis
10	K37	Unspecified appendicitis
10	K36	Other appendicitis

Daily number of cases $=$ Number of unique people with a claim for appendicitis in a city for a given age and sex for each day

Daily number of people at risk = Number of unique people in the Truven database for a given age and sex for each day

We assumed that people only ever get appendicitis once (obviously true if managed surgically) and so only retain the first diagnosis of appendicitis for a person as the event date

Female Enrollees
Age

0-5
$6-10$
$11-15$
$16-20$
$21-30$
$31-40$
$41-50$
$51-60$
$61-70$
$71-80$
$81+$

Cases	Person-Years at Risk in 100,000s	Annualized Incidence Per 100,000	Cases	Person-Years at Risk in 100,000s	Annualized Incidence Per 100,000
3,365	130.5	25.8	4,306	136.9	31.4
15,110	137.3	110.1	22,156	143.3	I 54.6
27,137	152.1	178.4	38,968	158.5	245.8
36,918	159.8	231.0	42,472	165.2	257.0
59,764	293.1	203.9	60,093	270.1	222.5
58,002	333.0	174.2	55,515	297.9	186.4
56,699	390.1	145.4	50,374	349.0	144.3
51,523	397.2	129.7	42, 110	350.2	120.3
22,424	205.3	10.92	20,583	184.6	111.5
7,349	84.9	86.6	7,376	69.9	105.5
4,153	60.5	68.7	3,520	37.7	93.3

For each city, we found the recorded hourly temperature observations as reported by the National Centers for Environmental Information, part of NOAA, since 1980

This database has 1,000 s of sites across the United States - mostly, but not exclusively, at airports

We used all weather stations within 100 km (62 miles) of a city's center to define the temperature experienced by people in that city

Suppose the humble Polish sausage is a risk factor for appendicitis

Google search volume for "Polish Sausage"

Google search volume for "Polish Sausage"

Eats
 lots of
 Polish
 Sausage

Google search volume for "Polish Sausage"

Google search volume for＂Polish Sausage＂in Illinois for the last 5 years

Demand for Polish sausage will be the same year-to-year in Chicago
And the same is true (but much lower) in Miami

We do this for

Cities (a city is similar to itself year after year)

Year (each year has a similar effect on incidence across all cities)

Estimate this model with a negative binomial fixed effects regression

		95% CI (robust SE by clustered by MSA)	
	Incidence Rate Ratio	Lower Bound	Upper Bound
Prior Week Temperature	1.012	1.007	1.016
(Per 10 Degrees)			

For every 10 degree increase in temperature when the temperature is below 53 , there is a 1.2% increase

PriorWeek Temperature (Per 10 Degrees)	Incidence Rate Ratio 1.012	95\% CI (robust SE by clustered by MSA)	
		Lower Bound 1.007	Upper Bound 1.016
Prior Week Temperature			
53-73F			
Additional Change	1.018	1.009	1.027

For every 10 degree increase in temperature when the temperature is $53-73$, there is a $1.2^{*} 1.8=2.2 \%$ increase

Prior Week Temperature (Per 10 Degrees)	Incidence Rate Ratio 1.012	95\% CI (robust SE by clustered by MSA)	
		Lower Bound 1.007	Upper Bound 1.016
Prior Week Temperature 53-73F			
Additional Change	1.018	1.009	1.027
Prior Week Temperature $>73 F$			
Additional Change	1.035	1.022	1.049

Prior Week Temperature (Per 10 Degrees)	Incidence Rate Ratio 1.012	95\% CI (robust SE by clustered by MSA)	
		Lower Bound I. 007	Upper Bound I.016
Prior Week Temperature 53-73F			
Additional Change	1.018	1.009	1.027
PriorWeek Temperature			
>73F			
Additional Change	1.035	1.022	1.049

For every 10 degree increase in temperature when the temperature is below 53, there is a 1.2% increase in incidence For every 10 degree increase in temperature when the temperature is $53-73$, there is $I .2^{*} 1.8=2.2 \%$ increase For every 10 degree increase in temperature when the temperature is above 73 , there is a $I .2 * 3.5=4.2 \%$ increase

Warmer temperature had increased risk but maybe its due to confounding by omitted seasonality

Incidence of
Appendicitis

I. Clinically significant increase in incidence of appendicitis during the warmer periods of the year
2. Incidence is associated with deviations in temperature after adjustment for expected temperature, suggesting a causal role for temperature
3. Effect is consistent between both severe and non-severe cases of appendicitis
4. Potential method to reduce recurrence following medical management

Changing Climate, Changing Diseases

Vector | Lyme disease |
| :--- |
| changes |\(\left\{\begin{array}{l}Zika

Malaria

West Nile Virus\end{array}\right.\)

Changing Climate, Changing Diseases

Vector | changes |
| :--- |\(\left\{\begin{array}{l}Lyme disease

Zika

Malaria

West Nile Virus\end{array}\right.\)
Influenza
Like
Illnesses $\left\{\begin{array}{l}\text { RSV } \\ \text { Influenzas } \\ \text { Rhinoviruses } \\ \text { Coronaviruses }\end{array}\right.$

Changing Climate, Changing Diseases

Changing Climate, Changing Diseases

