

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND CHEMICAL BIOLOGICAL CENTER

Technical Considerations for Building Predictive Toxicological Tools in Support of the Chem/Bio Defense Mission

Kyle Glover, PhD

Branch Chief, Molecular Toxicology

CCDC CBC, Toxicology and Obscurants Division

ABOUT CCDC CHEMICAL BIOLOGICAL CENTER

OUR MISSION & VISION

MISSION: Provide innovative chemical, biological, radiological, nuclear and explosive (CBRNE) defense capabilities to enable the Joint Warfighters' dominance on the battlefield and interagency defense of the homeland.

VISION: Be the premier provider of innovative CBRNE solutions for the Army, DOD, the Nation, and our allies.

MEETING SOLDIER NEEDS

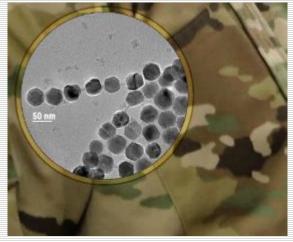
DETECTION

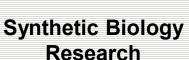
PROTECTION

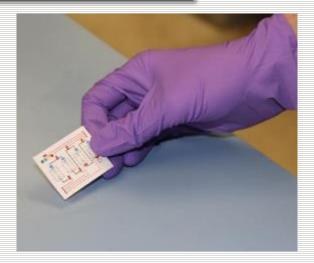
OBSCURATION

DECONTAMINATION

UNIQUE INFRASTRUCTURE



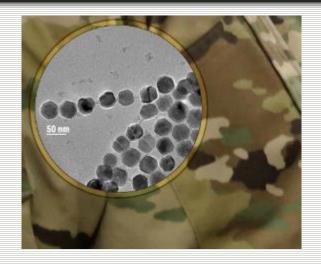


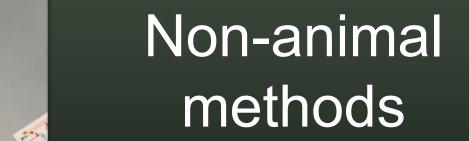

NOVEL APPROACHES TO CBRN DEFENSE

HOW CCDC IS RESEARCHING EMERGING CBRN THREATS TO UNDERSTAND THEIR EFFECTS

Cellular Toxicology

Threat Agent Science




NOVEL APPROACHES TO CBRN DEFENSE

HOW CCDC IS RESEARCHING EMERGING CBRN THREATS TO UNDERSTAND THEIR EFFECTS

Synthetic Biology Research

Cellular Toxicology

Threat Agent Science

SOLUTIONS REQUIRE COLLABORATION

SMALL BUSINESS

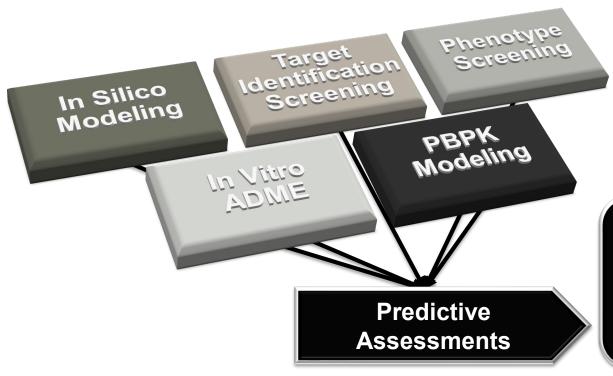
ACADEMIA

DOD & FEDERAL PARTNERS

LOCAL GOVERNMENTS

- ✓ Cooperative Research
 And Development
 Agreement (CRADA)
- ✓ Educational Partnership Agreements (EPA)
- ✓ Technology Support Agreement (TSA)
- ✓ Patent License Agreement (PLA)
- ✓ Army Small Business Innovation Research (SBIR)
- ✓ Chemical Biological Defense (CBD) SBIR

- ✓ Army Small Business Technology Transfer (STTR)
- ✓ CCDC CBC Broad Agency Announcement (BAA)
- ✓ Rapid Innovation Fund BAA
- ✓ Memorandum of Understanding (MOU)
- ✓ Memorandum of Agreement (MOA)
- Material Transfer Agreement (MTA)
- ✓ Non-DoD Interagency Agreement (IAA)



BUILDING FOR FUTURE CB NEEDS

Primary Thrust Areas for Molecular Toxicology

- Potency
- Molecular Target(s)
- Mechanism of Toxicity
- Similarity Assessment
- Species Differences
- Human Risk Assessment

IN SILICO MODELING

Need:

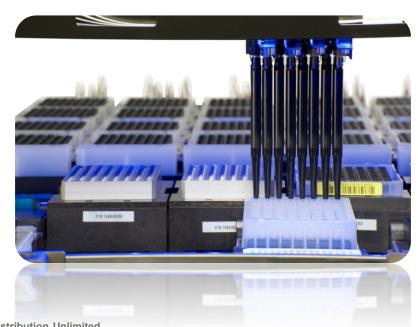
- Predicted safe, hazardous and lethal exposure concentrations (no safety margins)
- Relative potency within a chemical class
- Potential physical hazards
- Potential molecular targets and MOA
- Differences in target affinity of similar analogs
- MIXTURE effects

Hazard classifications are NOT a primary concern, or issues related to regulatory safety testing of new chemicals

IN SILICO MODELING

Criteria for Successful Integration:

- Software considerations (can it be integrated into Army IT infrastructure?)
- Ease of updating with proprietary data
- Ease of integration with other modeling tools
- Built on data sets relevant to the CBD mission


TARGET IDENTIFICATION

Need: High-content tools that can identify potential primary and secondary molecular targets of possible threat compounds.

Criteria for successful model integration:

- Technology transfer doesn't require unique
- infrastructure or equipment
- Sensitivity/Specificity for CBD relevant threat compounds
- Subcytotoxic responses
- Human targets

PHENOTYPIC SCREENING

Need: Target agnostic systems that measure organ specific function

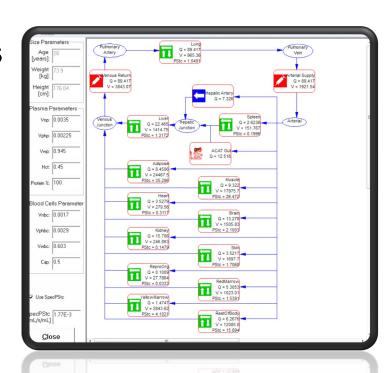
Criteria for Successful Model Integration:

Organ systems of interest: hepatic, CNS, cardiac,

respiratory, dermal

 Consider ADME and organ-organ interactions

- As simple as possible!
- Avoid unnecessaryComplexity
- Give indication of MOA


ADME AND PBPK MODELING

Need: Extrapolation from existing data, batch processing and high-throughput toxicokinetics (HTTK), in vitro to in vivo extrapolations (IVIVE)

Criteria for Successful Integration:

- Ability to integrate with other tools
- Consider respiratory and dermal routes of exposure

OTHER MAJOR CONSIDERATIONS FOR CBRN SOLUTIONS

- Consumable over reusable materials/platforms that come into contact with test substance.
- Ease of decontamination
- Ease of operation within engineering controls
- On-site service!! Equipment does not leave the lab.

Thank you!

CCDC Chemical Biological Center Public Affairs Office:

Richard Arndt 410-436-1479 richard.m.arndt.civ@mail.mil CCDC Chemical Biological Center Technology Transfer Office:

Amanda Hess 410-436-5406 amanda.l.hess9.civ@mail.mil

Follow us online:

http://www.cbc.ccdc.army.mil/