Pesticides Invention to Market

Douglas C. Wolf, D.V.M., Ph.D., FIATP, ATS
Senior Fellow
Product Safety
Syngenta Crop Protection, LLC
doug.wolf@syngenta.com

What is an agrochemical?

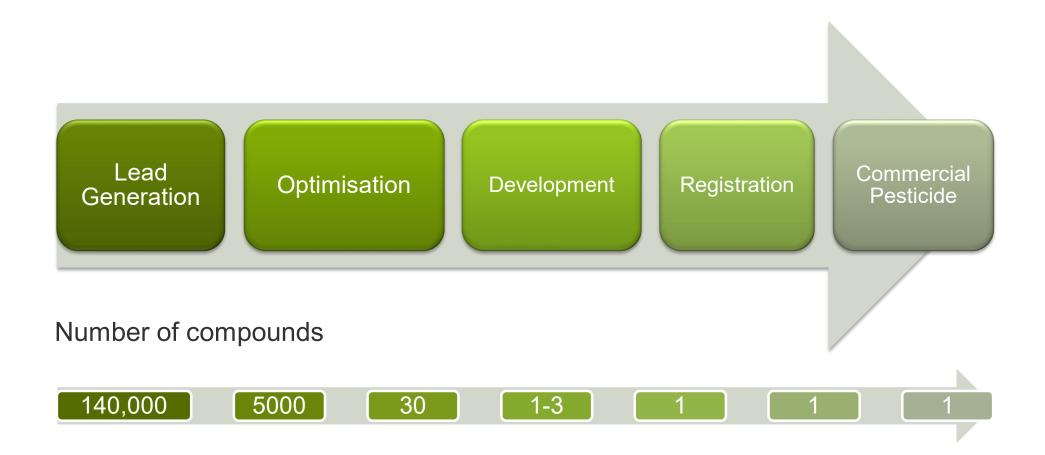
A chemical which can safely be applied to a crop in order to give the farmer:

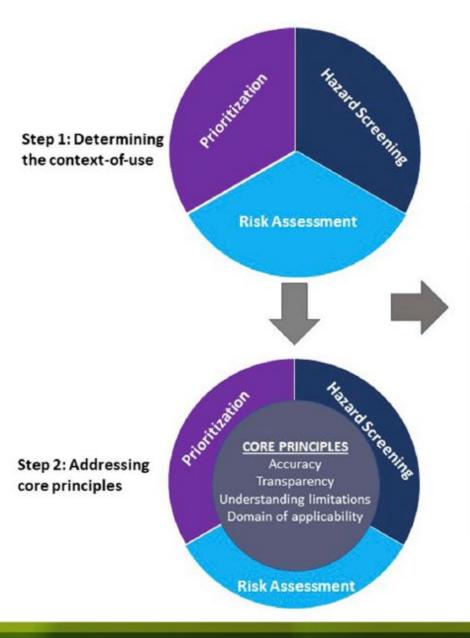
- Higher yields
- Better quality produce
- Reliability
- Ease of harvest

Agrochemicals include **insecticides**, **fungicides** and **herbicides** which are collectively known as crop protection products.

Crops are in competition with weeds, plant diseases, insects and other organisms.

- About 10,000 insect species are classified as pests
- At least 600 species of plants are classified as weeds
- Some 1,500 different fungi cause plant diseases


Insect control



Fungal control

The Route to Market

Step 3: Fit-forpurpose criteria

Criteria	Prioritization	Hazard Screening	Risk Assessment
chemical applicability domain		-+	
SOP - source and species of cell/tissue	- 1	-	
assay description			
quality of verification datasets		- +	
SOP - metabolic competence status		-+	
FFP test validity (acceptance criteria)		-	
Independent peer review	1		
Endpoint or pathway for prediction			
explanation of mechanistic basis	1		
Assay robustness	1		
Data accessibility	T.		_
Biological comparison with in vivo data, animal or human			
Statistical evaluation of model/assay	1		
Level of certainty in prediction	4		
biological variability and sub-populations of relevance	-	4	
	Less More	Less More	Less M

Knowledge Needs Differ According to Development Phase

Toxicological Knowledge Required:

Early Stage

Middle Stage

Regulatory Agency Needs

Acute Hazard
Genetic Toxicity
Understanding of PK
Low Dose Target Organ &
Carcinogenicity Potential
Developmental and
Reproduction Toxicity Potential

ADME
Sub Chronic Toxicity
Reproductive Toxicity
Preliminary Risk Assessments

Acute Hazard Genotoxicity Carcinogenicity & Chronic Toxicity Reproductive Toxicity **Developmental Toxicity Neurotoxicity** Sub Chronic Toxicity (Non-Rodent) **Dermal Absorption** ADME **Metabolite Testing** Manufacturing Intermediates Formulation Toxicity Definitive Risk Assessments

Understanding Safety and Risk

Questions?

Bringing plant potential to life