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List of Abbreviations and Acronyms 
AA  Aristolochic acid 
APOBEC Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 
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CIMP  CpG island methylator phenotype 
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MC-ICPMS Multicollector inductively coupled plasma mass spectrometry 
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NIH  National Institutes of Health 
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RCC  Renal cell carcinoma 
SBS  Single base substitution 
TCGA  The Cancer Genome Atlas 

Glossary 
Term Definition 
Epigenomics Epigenomics describes the study of the epigenome. Derived from Greek, 

epigenome means “above” the genome. The epigenome consists of 
chemical compounds that modify DNA. Those modifications, also called 
marks, change how the body reads DNA to make proteins. Although 
epigenetic marks are not genetic material, they can be passed on through 
cell division, and from one generation to the next.1 

 
1 According to the Fact Sheet on Epigenomics published by the National Human Genome Research Institute: 
htp://www.genome.gov/27532724  

http://www.genome.gov/27532724
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Term Definition 
Exposome The exposome comprises all the exposures an individual experiences in a 

lifetime and how those exposures relate to health. Exposure begins in 
utero and includes effects from environmental and occupational sources. 
This report will discuss how exposures from an individual’s environment, 
diet, and lifestyle interact with unique personal characteristics such as 
genetics, physiology, and epigenetics to impact health.2 

Genetics Genetics refers to the study of genes and their roles in inheritance and 
explores how specific traits or conditions are biologically passed down 
from one generation to another. Genes carry the instructions for making 
proteins, which direct the activities of cells and the functions of the body. 
Examples of genetic, or heritable, medical conditions include cystic 
fibrosis, Huntington’s disease, and phenylketonuria (PKU).3 

Genomics Genomics, a more recent term than genetics, describes the study of all of a 
person’s genes (the genome), including interactions among genes and the 
person’s environment. Genomics includes the scientific study of complex 
diseases such as heart disease, asthma, diabetes, and cancer. Such 
diseases are typically caused by a combination of genetic and 
environmental factors rather than by individual genes. Genomics offers 
new possibilities for more targeted therapies and treatments for complex 
diseases, as well as new diagnostic methods.4 

Metabolomics Metabolomics is the study of the biological metabolic profile of a cellular 
specimen in a specific environment at an isolated timepoint. This discipline 
depicts the physiological states of cells and organisms by focusing on 
carbohydrates, lipids, and other metabolites. Several analytical techniques, 
such as mass spectrometry and electrophoretic applications, are utilized to 
quantify the metabolic content of specimens.5 

Mutational signature Different mutational processes generate unique combinations of 
mutations, called mutational signatures that are commonly represented as 
single base substitution (SBS), doublet base substitution (DBS), small 
insertions-deletions (ID) or copy number variation (CN) signatures. 
Mutations accumulate  throughout life in the human body. Errors in DNA 
replication, exposures to mutation-causing agents produced inside or 
outside the body, enzymatic modifications to DNA, and defective DNA 
repair can all cause mutations.6 

 
2 National Institute for Occupational Safety and Health (NIOSH). Exposome and Exposomics. Available at 
htps://www.cdc.gov/niosh/topics/exposome/  
3 Frequently Asked Questions About Genetic and Genomic Science. NHGRI. Available at 
htp://www.genome.gov/19016904  
4 See footnote 3 above. 
5 Derived from the NCI Thesaurus found at 
htps://ncit.nci.nih.gov/ncitbrowser/pages/multiple_search.jsf?nav_type=terminologies  
6 htps://cancer.sanger.ac.uk/signatures/  

https://www.cdc.gov/niosh/topics/exposome/
http://www.genome.gov/19016904
https://ncit.nci.nih.gov/ncitbrowser/pages/multiple_search.jsf?nav_type=terminologies
https://cancer.sanger.ac.uk/signatures/
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Term Definition 
Omics The informal term “omics” describes the study of related sets of biological 

molecules.7 Examples of omics disciplines include genomics, 
transcriptomics, proteomics, metabolomics, and epigenomics. This report, 
broadens the definition to encompass exposomics and phenotypes 
resulting from environmental exposures. 

Organoid An organoid is a tiny, three-dimensional mass of tissue derived from stem 
cells, or cells that can develop into specialized cells. Organoids can 
simulate human tissues and organs or specific types of tumors. Scientists 
use organoids to study how normal tissues or cancers form and to test new 
drugs and other types of treatment before they are given to people.8 

Phenotype A phenotype is the set of observable characteristics resulting from 
interactions between an individual’s genes and the environment. 
Phenotype can refer to common traits, such as height or hair color, or to 
the presence or absence of a disease, among other qualities.9 

Polygenic risk score 
(PRS) 

A polygenic risk score provides a measure of an individual’s disease risk 
based on their genetic makeup. Combining polygenic risk scores with other 
factors that affect disease risk, such as environmental exposures, can 
improve insight into how likely an individual is to develop a specific 
disease.10 

Precision Environmental 
Health 

Precision environmental health focuses on individualized risk assessment 
and interventions to prevent disease. Practitioners aim to reduce adverse 
health effects from exposures through air, water, and food by identifying 
individuals who are specifically susceptible and enabling precise, targeted, 
and effective prevention.11 

Proteomics Proteomics is the study of the structure and function of proteins, including 
the way they work and interact with each other inside cells. 

Transcriptomics Transcriptomics is the study of the transcriptome, or the complete set of 
RNA transcripts — instructions for making proteins — that are produced by 
the genome, under specific circumstances or in a specific cell.12 

 

 

 
7 IOM (Institute of Medicine). 2012. Evolution of Translational Omics: Lessons Learned and the Path Forward. 
Washington, DC: The National Academies Press. 
8 NCI Dictionary of Cancer Terms. Available at htps://www.cancer.gov/publications/dictionaries/cancer-
terms/def/organoid  
9 Phenotype. NHGRI Talking Glossary of Genomic and Genetic Terms. Available at 
htps://www.genome.gov/genetics-glossary/Phenotype  
10 Polygenic Risk Scores. CDC, Genomics & Precision Health. Available at 
htps://www.cdc.gov/genomics/disease/polygenic.htm  
11 Walker CL, Dolinoy D, Baccarelli A. Perspectives on Precision Environmental Health. National Advisory Health 
Sciences Council, February 2021. 
12 htps://www.nature.com/subjects/transcriptomics  

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/organoid
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/organoid
https://www.genome.gov/genetics-glossary/Phenotype
https://www.cdc.gov/genomics/disease/polygenic.htm
https://www.nature.com/subjects/transcriptomics
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Executive Summary 
The National Institute of Environmental Health Sciences (NIEHS) and the National Cancer Institute (NCI) 
convened a virtual workshop, Molecular Signatures of Exposure in Cancer, on June 29 and 30, 2023. The 
meeting aimed to i) determine how research in mutational, epigenetic, and other omics signatures can 
further inform cancer etiology, ii) assess whether signatures of exposure can be identified from other 
omic data types, and iii) determine how these approaches can be applied to cancer prevention and 
uncover cancer etiologies linked to environmental exposures. 

The workshop goals were to: 

• Define the current state of the science of using molecular signatures to link environmental 
exposures to cancer. 

• Prioritize pressing needs and opportunities that, if pursued, would aid progress in identifying 
molecular signatures of exposure in cancer. 

• Explore ways to use molecular signatures of exposure to improve cancer prevention. 

The workshop was co-chaired by Cheryl Walker, Ph.D., of Baylor College of Medicine, and Hannah Carter, 
Ph.D., of the University of California, San Diego, and planned by members of the NIEHS-NCI Cancer and 
the Environment Working Group. Each of the five topic sessions offered a state-of-the-science overview 
followed by three brief, targeted presentations and an extensive moderated discussion panel. Combined, 
the sessions featured talks from 26 leading investigators with expertise in computational biology, 
epidemiology, exposure science, and cancer biology.  

A sixth and final session, comprising all the invited experts, summarized the workshop findings and 
discussed future directions. Over 1,200 people atended the meeting and participated by sending 
questions and comments during presentations and discussion sessions. Below are key points identified 
in each of the topic sessions as well as a summary of key needs within the field. 

Session 1: Mutational Signatures of Exposure in Cancer 

• The effect of exposures on mutational signatures can be complex, multi-factorial, and dependent 
on context; mutational signature profiles can be altered by factors such as tissue and cell type, 
carcinogen metabolism, genetic background, exposure dose, and competing endogenous 
mutational processes. 

• Many exposures are not linked to detectable mutational signatures, and many mutational 
signatures have an unknown cause or may be reflective of multiple exposures. 

• Integration of mutational signatures with other data modalities may identify new etiological 
linkages or refine existing ones.  

• Detection of mutational signatures in normal tissues of healthy individuals may complement 
studies in cancerous tissues to beter characterize the evolution from healthy tissue to cancer. 
Studies across the lifetime are needed to understand the effects of exposure-induced mutations 
versus mutations in late-stage tumors. 

• In-depth studies of the effects of promoters on histologically normal tissue may help to link 
initiation mutations induced by environmental agents to changes in the cellular 
microenvironments. Such studies can help develop interventions that prevent advancement of 
initiated tumors.  
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Session 2: Other Data Types as Signatures of Exposure in Cancer 

• Omic data types including the epigenome, microbiome, proteome, and metabolome, as well as 
immune and inflammatory profiles, may be developed as molecular signatures of exposure in 
cancer.  

• Biological responses to exposures can be transient and may limit the identification of molecular 
signatures. 

• The role of epigenetic changes in driving cancer formation is not well understood. Many 
epigenetic changes are highly dynamic and specific epigenetic changes may depend on the 
developmental windows of the exposure. 

• Systems biology and computational modeling approaches are needed for understanding the 
non-mutational processes of cancer development. 

• Development of cell-free (liquid biopsy) profiles is needed for omic data types to identify non-
mutational signatures of cancer risk across tissues. 

• Development of longitudinal cohorts or serial sample resources with robust meta-data is needed 
for greater temporal resolution of environmental carcinogenic processes. 

• Other omic data types, including epigenetics, may be applied to aging signatures that can be 
associated with cancer risk.  

Session 3: Computational Challenges and Integrating Multi-Omics to Identify Signatures 

• Beter analysis methods are needed to understand mutational signatures and incorporate other 
data types with mutational signatures. Network approaches can incorporate multi-scale data, 
including genetic diversity, with respect to carcinogenesis. 

• Network and nonlinear machine approaches to molecular signature analysis require further 
development. Deep-learning approaches have great potential but require significant amounts of 
data that are not readily available. Machine learning methods that are nonlinear or constrained 
by biological understanding may be more effective.  

• Beter data and analysis linking exposure data to molecular signatures are needed. Multi-omic 
profiles of exposures could utilize experimental models, population data, or single cell profiles of 
tissue. Time course data and normal tissue comparators are critical for identifying and 
interpreting molecular signatures. 

• Development of multi-omic profiles of cells or tissues across cancer development (normal to 
malignancy) are necessary to understand how exposures affect cancer initiation and 
progression.  

• Benchmarking of methods, validation of signatures, and standardized data would greatly help 
computational analysis and calibrate the performance of new computational methods.  

Session 4: Challenges in Tracking Signatures of Exposures 

• Continued identification of the cell types and model systems that best recapitulate human 
population effects and that are generalizable is needed. Experimental systems include mouse 
embryo fibroblasts, human induced pluripotent stem cells, human tissue organoids, mouse 
models and data derived from human populations. 

• Beter understanding of biomarkers of exposure is needed, particularly to determine that 
biomarkers are stable, dependent on life stage, and reflective of dose and timing. 
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• Continued study of biomarkers and their specificity, interactions, and related physical measures 
is needed. These biomarkers include circular RNAs, DNA methylation, DNA adducts, DNA 
mutation, metal isotopes, and protein adducts. 

• Methods are needed to address chemical mixtures and the exposome, including laboratory 
methods that systematically test chemicals of interest and advanced statistical methods for 
mixtures analysis. 

Session 5: Population-Based Cancer Studies 

• More frequent and closer interactions between population scientists and experimental scientists 
would stimulate collaboration and accelerate research. 

• Connect human studies to mechanisms using experimental models, such as organoids, to 
validate mutational signatures from human populations. 

• Initiate new forms of cohorts, like mother-child cohorts, to look at early-life exposures and 
increase population diversity. 

• Develop enhanced intermediate outcomes, like clonal expansion, and more accurate, scalable 
exposure assessments. 

Overall Key Messages 

• The associations between mutational signatures, exposures, and cancer have many complexities 
such as specificity, stability, and context dependency with no generalizable rules.  

• Including multi-omic data as signatures of exposure in cancer is preferable to relying on single 
modality measurements.  

• More frequent and closer interactions between population scientists and experimental scientists 
would stimulate collaboration and accelerate research. 

• Implementing or improving data standards, datasets for calibration, and benchmarking of 
computational methods would aid computational studies that link molecular signatures of 
exposure to cancer. 

• Focusing on a timely and tractable problem, such as an exposure window, mixtures, or 
longitudinal sampling, might be a useful model for applying multi-omic measures to identify 
molecular signatures.  

• Multi-omic and exposure datasets are needed that are accessible, standardized, well-annotated, 
and represent longitudinal samples. Data sets from experimental models or human studies 
would be useful. 
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Introduction and Overview 
On June 29 and 30, 2023, the National Institute of Environmental Health Sciences (NIEHS) and National 
Cancer Institute (NCI) convened a workshop on Molecular Signatures of Exposure in Cancer. The 
workshop was co-chaired by Cheryl Walker, Ph.D., of Baylor College of Medicine and Hannah Carter, 
Ph.D., of University of California, San Diego. The workshop was planned by members of the NCI/NIEHS 
Cancer and the Environment Working Group. Because the mining of genomic data for mutational and 
epigenetic signatures has been successful in identifying links between environmental exposures with 
cancer, the workshop aimed to inform how research in mutational and epigenetic signatures can be 
further advanced to inform cancer etiology, prevention, and population studies. The workshop brought 
together a multidisciplinary group, including environmental scientists, epidemiologists, toxicologists, 
physicians, and bioinformatics researchers (See Appendix 1 for the full list of participants and 
biographies). Presentations and moderated discussions highlighted challenges and opportunities related 
to defining and using molecular signatures of exposure in cancer. The full workshop agenda is included in 
Appendix 2. Key publications are available in Appendix 3. 

The workshop was organized into six main sessions over two days. Each session included a State of the 
Science speaker to give a broad overview of the session theme, three Synopsis speakers to apply the 
session theme to a particular research project or idea, and an extended panel discussion to address key 
questions on the session topic. A session moderator led a brief question-and-answer period following 
the State of the Science presentation and guided the panel discussion, which included all session 
speakers.  

The session titles for each day are indicated below. 

Day 1 
• Session I: Mutational signatures of exposure in cancer  
• Session II: Other data types as signatures of exposure in cancer  
• Session III: Computational challenges and integrating multi-omics to identify signatures 

Day 2 
• Session IV: Challenges in tracking signatures of exposures 
• Session V: Population-based cancer studies 
• Session VI: Workshop summary and future directions 

 
Trevor Archer, Ph.D., Deputy Director of NIEHS, and Dan Gallahan, Ph.D., Director of the Division of 
Cancer Biology at NCI, gave opening remarks to begin the workshop.  

Archer explained that the workshop would build upon the key takeaways from a previous workshop held 
in February 2023, titled Integrating Environmental Data with Other Omics for Cancer Epidemiology. That 
workshop discussed how to incorporate environmental exposures into genetic and other omics data, 
with emphasis on study design, data harmonization, and reproducibility. This workshop was an 
opportunity to dig deeper into omics studies that are characterizing signatures of exposure in cancer. 
Participants described current efforts to identify and apply signatures for cancer prevention studies and 
identified gaps and needs. The importance of considering existing and potentially new data streams was 
emphasized. 
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Gallahan discussed the cancer research community’s role in finding mutations and molecular profiles 
related to cancer through programs like The Cancer Genome Atlas (TCGA) and the Human Tumor Atlas 
Network (HTAN), including both germline and somatic level targets and mutations that occur in tumors.  

The speakers selected for this workshop included computational biologists, epidemiologists, exposure 
scientists, and other experts in cancer research who could field a range of questions. 

Following opening remarks, Carter and Walker expressed their thanks for the speakers and excitement 
for the workshop. The purpose and intended outcomes of the workshop were presented by members of 
the planning committee, Ron Johnson, Ph.D., of NCI, and Dan Shaughnessy, Ph.D., of NIEHS. The 
workshop goals were to define the current state of the science of using molecular signatures to link 
environmental exposures to cancer; prioritize pressing needs and opportunities that, if addressed and 
pursued, will aid progress in identifying molecular signatures of exposure in cancer; and explore ways to 
use molecular signatures of exposure to improve cancer prevention. 

Throughout the sessions, the workshop sought to answer these key questions: 

• What are the major gaps in, and opportunities for, identifying molecular signatures of exposure 
in cancer? 

• What resources and approaches are needed to accelerate this research area in the next five 
years? 

• How can molecular signatures of exposure be applied to improve cancer prevention?  
 

 

The remainder of this report summarizes speaker presentations and accompanying discussion, as well as 
key takeaways and suggested future directions for NCI and NIEHS. 

Session 1: Mutational Signatures of Exposure in Cancer 
Session 1 was moderated by Ludmil Alexandrov, Ph.D., of the University of California, San Diego. The 
session discussed opportunities, caveats, and challenges related to using mutational signatures of 
exposure in cancer, mutational signatures to identify novel causes of cancer, and alternative models of 
cancer initiation and progression. The session aimed to critically discuss the state of the science on the 
specificity of signatures, the types of exposures associated with known signatures, whether 
nongenotoxic exposures elicit mutational signatures, and association of early signatures with stages of 
cancer. 

State of the science: Emerging opportunities and caveats of using mutational signatures 
of environmental exposures 
Serena Nik-Zainal, Ph.D., University of Cambridge 

Mutational signatures are readouts of mutagenic processes that have occurred through a tissue’s or 
tumor’s history and are a product of a combination of DNA damage and DNA repair. Some mutational 
signatures result from endogenous, or intrinsic processes, such as deamination of methyl-cytosine or 
dysregulation of APOBEC (Apolipoprotein B mRNA Editing Catalytic Polypeptide-like) enzymes. Other 
signatures stem from exogenous, or environmental, mutagens, such as UV light, tobacco smoke, or 
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aristolochic acid (AA). Each one could leave a characteristic imprint on the genome, regardless of 
whether it is caused by an endogenous or exogenous source. Sequencing the genome gives a composite 
of these different processes. Mutational signatures are also a function of the magnitude (dose, duration) 
of the exposure. Many algorithms have been developed to identify signatures indicative of these 
exposures. Ultimately, mutational signatures can help researchers identify cancer risk and develop early 
interventions. 

Learning how mutations arise in a controlled environment is a critical part of identifying mutational 
signatures arising from environmental mutagens. When studying cancer in cellular model systems, such 
as human, yeast, mouse embryo fibroblasts (MEFs), and in vivo models like Caenorhabditis elegans and 
mice, it is important to consider: 

• A single environmental mutagen can cause multiple mutational paterns. 
• Many environmental mutagens are a combination of compounds, not single agents. 
• Some unrelated compounds can produce similar signatures. 
• Environmental agents can cause mutagenesis through various mechanisms. 
• Environmental agents can induce mutations as well as trigger other epigenetic 

alterations. 
• Exposure does not necessarily indicate causality for cancer. 
• Environmental agents can promote tumorigenesis without leaving a mutational 

signature. 

Modern genomic sequencing technologies can track mutational signatures of environmental carcinogens 
in human cells. Epidemiological observations coupled with systematic studies on mutational signatures 
of environmental carcinogens may uncover previously unknown mechanisms of mutagenesis and cancer.  

Can we use mutational signatures to identify novel causes of cancer? 
Paul Brennan, Ph.D., International Agency for Research on Cancer 

Because epidemiology only explains about 40% of the burden of cancer, various initiatives have explored 
international differences in cancer incidences to uncover unknown causes of cancer. One such example is 
the Mutographs13 study, which investigated 5,000 cancers representing five cancer types across five 
continents with high- and low-risk areas for each cancer type. Interestingly, esophageal squamous cell 
carcinoma and renal cell carcinoma (RCC) revealed different results. 

A case study14 of 552 esophageal squamous cell carcinomas sequenced across eight high- and low risk 
countries revealed no differences in mutational signatures. For example, cancer incidence was 20-fold 

 
13 htps://www.mutographs.org/ 
14 Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Cortez Cardoso Penha R, Fitzgerald S, Bergstrom EN, 
Atkins J, He Y, Khandekar A, Smith-Byrne K, Carreira C, Gaborieau V, Latimer C, Thomas E, Abnizova I, Bucciarelli PE, 
Jones D, Teague JW, Abedi-Ardekani B, Serra S, Scoazec JY, Saffar H, Azmoudeh-Ardalan F, Sotoudeh M, Nikmanesh 
A, Poustchi H, Niavarani A, Gharavi S, Eden M, Richman P, Campos LS, Fitzgerald RC, Ribeiro LF, Soares-Lima SC, 
Dzamalala C, Mmbaga BT, Shibata T, Menya D, Goldstein AM, Hu N, Malekzadeh R, Fazel A, McCormack V, McKay J, 
Perdomo S, Scelo G, Chanudet E, Humphreys L, Alexandrov LB, Brennan P, Straton MR. Mutational signatures in 
esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet. 2021 
Nov;53(11):1553-1563. doi: 10.1038/s41588-021-00928-6.  

https://www.mutographs.org/
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higher in China than in the United Kingdom despite no difference in mutational burden. The researchers 
also found no mutational signatures associated with known or suspected causes of esophageal 
squamous cell carcinomas, such as hot drinks, indoor air pollution, and poor diet. The team observed 
some associations between environmental or lifestyle exposures and mutational signatures in U.K., 
Japan, and Brazil between alcohol consumption and SBS16 signature, and in Iran between opium usage 
and SBS288J signature. 

By contrast, a study investigating 954 cases of renal cell carcinoma from 11 high- and low-risk countries 
showed differences in mutational signatures. For example, signature 12 — previously identified in some 
liver cancers — appeared in about 75% of the RCC cases from Japan but was largely absent elsewhere, 
which could be indicative of an exposure only present in Japan. As another example, Aristolochic acid 
(AA) signature SBS22 was present in almost all cases in Romania, about half of cases in Serbia, a few in 
Thailand, and almost none elsewhere. A novel signature, SBS40b, was found to be strongly associated 
with the incidence of RCCs across all countries.  

These two examples highlight how mutational signatures may explain international differences in 
incidence for some cancers but not others. They also illustrate that many known or suspected causes of 
cancer may affect non-mutagenic pathways. Emerging evidence suggests that certain mutagens are 
nearly ubiquitous in some populations but largely absent elsewhere, and traditional epidemiology has 
been poor at detecting these exposures. 

Mutational signatures of exposures: examples from lung cancer studies 
Maria Teresa Landi, M.D., Ph.D., National Cancer Institute 

The mere presence of a mutational signature related to an exposure within a tumor tissue does not 
imply or confirm causation. For example, SBS22 has been identified as a signature for AA exposure in 
multiple cancer types, including lung cancer. In a study of never-smokers in Taiwan, researchers found 
that mutations associated with SBS22 were mostly clonal, suggesting the exposure occurred early in 
tumor evolution. However, the team found no evidence of these types of mutations associated with AA 
in the major cancer driver genes, and SBS22 is also found in normal tissue. These observations raise the 
question of whether SBS22 is a signature of exposure or if it is associated with causality.  

In another study with smokers and non-smokers, there was no association between the dose of tobacco 
smoking and tobacco smoking signatures in lung cancer. This observation could suggest a saturation 
effect beyond which the signature cannot capture dose, potentially requiring large sample sizes to 
capture minimal differences in exposures. Further, when investigating subjects with chronic, episodic, 
old, and recent exposures, the researchers found no major differences in the signatures. They also found 
no signature of second-hand tobacco smoking in never-smokers. Simulation studies estimated that at 
least 10% of the mutations associated with tobacco exposure per sample would be needed to be 
detected by the algorithms at that given sample size. The idea that current algorithms may miss subtle 
mutations associated with cancer risk is an important consideration for cancer prevention. 

A third study involved two groups of heavy smokers, which were mostly identical in terms of sex, age, 
and cancer stage type, but differed in their presence of the APOBEC signature. In those with no or low 
APOBEC signatures, tobacco mutational signatures SBS4, DBS2 and ID3 were clearly identified, including 
epigenetic changes. However, in those with a strong APOBEC signature, no signatures of tobacco 
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smoking were seen, including epigenetically. This finding is likely due to altered cell state compositions in 
the tumors due to the mutations. Determining the effect of the co-occurrence of multiple mutational 
processes and genetic backgrounds is another challenge. 

Based on these three studies, actionable steps to consider for future studies include: 

• Use cohort studies that include pre-diagnostic samples. 
• Time the occurrence of mutational signatures in pre-cancer/tumor evolution. 
• Integrate other omics, cell of origin, cell state, and subjects’ genetic background. 
• Improve algorithm sensitivity. 
• Use biospecimens linked to detailed exposure information/exposomes. 
• Use large sample size/single repository of signatures. 
• Test different doses and mixtures of agents in experimental models. 

Alternative models of cancer initiation and progression 
Allan Balmain, Ph.D., FRS, University of California, San Francisco 

A classic model of cancer initiation and progression is based on the sequential accumulation of 
mutations, which lead to an increased mutational burden over time that in turn leads to sequential 
genetic activation of cancer hallmarks. An alternative model includes two major stages: initiation of 
cancer and promotion.15 When researchers compared these two models in mice, the classic model 
showed that most environmental factors tested resulted in few mutations and did not cause any obvious 
signatures. In the initiation-promotion model, a single mutagen exposure resulted in many mutations. 
This finding emphasizes that the number of mutagens in the models did not mater and that a single 
mutagen, when combined with a promoting factor, was enough to lead to the development of cancer. 

In a separate study that used deep sequencing to detect signatures, mice received one single exposure 
of DMBA. Two weeks later, researchers measured mutational signatures and found a DMBA signature. 
They also measured mutational signatures one year later, and the DMBA signature persisted. However, 
the mice did not develop cancer because they were not exposed to a promoter. The results show that 
mutational signatures can persist over time but not result in a tumor. 

In another assay, researchers used error-corrected duplex sequencing to find specific driver mutations. 
Mice treated with DMBA showed only four mutations in the canonical oncogenes, Nras and Hras. 
However, when mice were treated with DMBA and exposed to a tumor promoting agent for four weeks, 
a large clonal expansion of cells carrying mutations occurred, with tumors appearing weeks and months 
later. This finding again indicates that the rate-limiting step is exposure to the promoting factor, not to 
the initiating factor.  

Future directions for the field to begin documenting tumor promoting factors and how they operate to 
change the clonal architecture include: 

• Detection: development of short-term in vitro/in vivo assay for detection of promoter 
activity and clonal expansion in different tissue types. 

 
15 Balmain A. Peto's paradox revisited: black box vs mechanistic approaches to understanding the roles of 
mutations and promoting factors in cancer. Eur J Epidemiol. 2022. doi: 10.1007/s10654-022-00933-x.  
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• Understanding: large scale single cell RNAseq and epigenetic analysis of the dynamic 
impact of promoters on normal tissues. This work could investigate anti-promoters and 
non-toxic dietary or other factors that could be used to first understand, and then 
implement, cancer prevention strategies targeting the promotion stage. 

• Prevention: development of approaches to identification and elimination of potentially 
dangerous clones in normal tissues, using small molecules or activators of innate of 
adaptive immune systems 

Discussion 
Key discussion points from Session 1 included: 

Genetic background effect on signatures. Research in mice shows that genetic background clearly has 
an influence, not necessarily on mutational signatures, but on driver mutations found in tumors. The 
prevalence of a driver mutation can change dramatically between mouse strains, and there is a 
segregation of driver mutations across different populations. In lung cancer, an association has been 
found between germline retrotransposon insertions and tumor signatures, pointing to complex 
interactions between different factors. In some cases, genetic background and germline variants have a 
secondary impact, so determining what is happening on a molecular basis is difficult. For example, some 
people have a combination of cytochrome P450 enzymes that correlate with either fast or slow 
metabolism. That combination can affect metabolic activation or breakdown of chemical exposures into 
mutagenic compounds. 

Mutational signature complemented with epigenetic factors. Not all agents that cause cancer leave 
distinct mutational signatures. Therefore, other types of signatures may be useful, such as promoting 
signatures or adductomic signatures. For example, smoking causes seven different cancers, but when 
researchers examined signature SBS4 in human tumors among smokers and nonsmokers, they found it 
only in the respiratory tract, not in other tissues. Other epigenetic factors may contribute to tumor 
promotion without causing DNA adducts or direct DNA damage characteristic of mutational signatures.  
Environmental agents cause tumors via chronic inflammation, tissue damage, and tissue regeneration.  

Analyzing normal tissue. Growing evidence suggests that the cancer process starts at birth. If cancer is 
driven by an early-life environmental exposure, the associated mutational signature may not be found by 
looking at late-stage tumors that may be associated with a late-stage endogenous signature. For 
example, in esophageal tumors, the APOBEC signature — a late-stage phenomenon — dominates, 
perhaps obscuring important mutational signatures that occurred earlier in life. This concept suggests an 
opportunity for investigating normal tissues or placenta.  

Embracing complexity of biological systems. Cancer is not caused by a single mutation or a single event, 
but multiple mutations and a combination of events. In other words, elements work together in complex 
networks that drive disease. These elements also work in combination with genetic background and 
exposure history, among other factors. Therefore, it is important to integrate multi-omic data to 
understand how these elements interact with each other. 

Signatures for prevention. Because limited mutational signatures exist for predicting cancer, other 
modalities, like transcriptomic or epigenetic approaches, could potentially identify signatures that relate 
to other environmental factors that create tumor promotion conditions. For example, clonal architecture 
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can be used to distinguish between cancer risk among mice that share the same spectrum of mutations. 
Deep sequencing of normal tissue could reveal if certain clones expanded after the mice were exposed 
to a promoter. New research is investigating normal tissue clonal architecture in human samples to 
understand clonal evolution and develop potentially preventative approaches. A major question will be 
the degree to which agents influence specific clonal architecture. 

Future directions. Speakers shared their hopes and predictions for the field in the next 10 years, which 
included integrating more data on the microenvironment and other model features; applying signatures 
for clinical value; determining molecular alterations in  normal tissue before tumor development; 
studying mutational signatures in different populations and early life to reduce health disparities; 
reconstructing the process that occurs after a cell first interacts with a carcinogen to develop a more 
complete understanding of the carcinogenic process; using tools like deep sequencing, single cell 
sequencing, and artificial intelligence (AI); gathering more data and more tissue resources for a wider 
perspective. 

Session 2: Other Data Types as Signatures of Exposure in Cancer 
Session 2 was moderated by Scot Auerbach, Ph.D., of NIEHS. The session discussed non-mutational data 
types, such as epigenetic, metabolomic, and microbial changes, as signatures of exposure in cancer. The 
session aimed to answer questions related to the potential of non-mutational omic data types to 
identify signatures of tumor progression, whether certain omic data types are more applicable to certain 
exposures, and other emerging technologies could be used for molecular signatures of exposure. 

State of the science: Other data types as signatures of exposure in cancer  
Ting Wang, Ph.D., Washington University 
Genetic and epigenetic mechanisms work together during tumorigenesis. The epigenome is at the 
boundary between the genome and the environment and mediates most of the environment’s effects. 
Therefore, the epigenome and other cellular molecular profiles may provide an important opportunity to 
capture signatures of exposure during cancer evolution. These profiles include mutational signatures and 
other data related to genomics, metagenomics, epigenomics, transcriptomics, proteomics, 
metabolomics, and immune profiling.  

Omics is a collection of methods to measure and functionally characterize different types of 
biomolecules in cells of tissues. The past 20 years have seen rapid evolution of sequencing, mass 
spectrometry, methods for collecting specimens, and single-cell technologies. These new approaches 
produce large volumes of data that require different skills and paradigms to integrate, analyze, and 
interpret. As a result, advances have occurred in bioinformatics, computational algorithms, tool 
development, and AI used to analyze multi-omic data sets. These developments critically affect how 
molecular signatures in cancer are defined, identified, and applied. 

The impact of technology development is evident when looking at three important consortium projects 
that have created large data sets and that may provide a key resource for developing epigenetic 
measures of exposure: the NIH Roadmap Epigenome Project, Toxicant Exposures and Responses by 
Genomic and Epigenomic Regulators of Transcription (TaRGET), and the Human Pangenome Project. 
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The goal of the NIH Roadmap Epigenome Project16 was to create the first reference epigenome. 
Although the project ended in 2017, epigenomic data continues to accumulate: Over a hundred 
thousand complete human epigenome datasets now exist. This reference epigenome has enabled 
comparisons with the epigenomes of diseased tissue.  

The goal of the TaRGET consortium17 is to define a standard approach to investigate, in a systematic 
manner, how environmental exposures affect the genome. First, given a very specific exposure, 
researchers investigate how the epigenome responds in a target tissue. Second, they determine whether 
epigenetic changes in the target tissue can be discerned by studying a surrogate tissue. In one study, 
consortium members used a mouse model to test several toxicants, including arsenic, BPA, and PM2.5, 
and generated several thousand epigenomic datasets, which will be made public. Although the intent 
was not to investigate connections with cancer, the team identified a cancer outcome and epigenetic 
signatures at early stages of exposure. 

The Human Pangenome Project,18 which launched in 2019, will build upon the success of the Human 
Genome Project by incorporating more diversity. The project will sequence 350 individuals’ haplotype 
genomes, finish them telomere to telomere, and incorporate them into a new data structure that will 
represent diversity. This project presents a new opportunity to look at signatures of exposure and cancer 
in the context of different genetic backgrounds.  

Can developmental window-specific molecular fingerprint/surrogates clarify links of 
environmental exposure and cancer risk? 
Cathrine Hoyo, Ph.D., North Carolina State University 

Over 80,000 chemicals have been identified as environmental contaminants, and approximately 2,000 
more are added each year. Toxicity data is lacking for many of these chemicals, including 40% of “high 
production volume” substances. Beyond chemical toxicity, where people live affects risk. For example, 
the liver cancer risk in some contiguous North Carolina counties is about half the rate in other counties, 
but the reason is unclear. This discrepancy highlights the importance of using intermediate surrogates to 
link environmental exposures to cancer.  

Social, chemical, and lifestyle stressors all shape a cumulative epigenetic “fingerprint,” resulting in 
changes to the transcriptome, proteome, and metabolome. However, how epigenetic changes drive 
cancer is not well understood.   

 
16Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, 
Beaudet AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA. The NIH Roadmap Epigenomics 
Mapping Consortium. Nat Biotechnol. 2010;28(10):1045-8. doi: 10.1038/nbt1010-1045. 
17 TaRGET: htps://targetepigenomics.org/ 
18 Wang T, Antonacci-Fulton L, Howe K, Lawson HA, Lucas JK, Phillippy AM, Popejoy AB, Asri M, Carson C, Chaisson 
MJP, Chang X, Cook-Deegan R, Felsenfeld AL, Fulton RS, Garrison EP, Garrison NA, Graves-Lindsay TA, Ji H, Kenny EE, 
Koenig BA, Li D, Marschall T, McMichael JF, Novak AM, Purushotham D, Schneider VA, Schultz BI, Smith MW, Sofia 
HJ, Weissman T, Flicek P, Li H, Miga KH, Paten B, Jarvis ED, Hall IM, Eichler EE, Haussler D; Human Pangenome 
Reference Consortium. The Human Pangenome Project: a global resource to map genomic diversity. Nature. 
2022;604(7906):437-446. doi: 10.1038/s41586-022-04601-8.  
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The penetrance of epigenetic changes is variable due to host genetics, exposure dose, window of 
susceptibility, and other environmental factors. These factors should be measured in the context of 
features such as chromatin and proteome changes that are associated with epigenetic changes. 
Additionally, more empirical data from exposed populations could inform efforts to model the effects of 
epigenetic changes on cancer risk and establish a beter understanding of epistatic events that occur 
between the genome and environment. Certain atributes of DNA methylation, including its 
responsiveness to environmental stressors (archives of exposure), can be leveraged for exposure 
assessment, using high throughput sequencing and analytic methods (arrays). This approach could be 
applied to DNA demethylation and activation of genomic transposable elements, which are sensitive to 
environmental perturbations and have been shown to affect carcinogenic cell pathways. However, some 
shortcomings of the approach include reliance on published arrays, which are limited in genome 
coverage, and case-control comparison feasibility, which depend on accessible tissues like blood and 
saliva. 

There is a need to leverage what is known about the genome and to develop a semblance of whole 
genome responsive elements. As an example, one study investigated DNA methylation throughout the 
genome in search of chromosomal regions that reflect genomic imprinting called imprint control regions 
(ICRs).  The team identified 1,488 ICRs, representing more than 22,000 CpG sites — areas in DNA where 
a cytosine nucleotide occurs next to a guanine nucleotide. Methylation marks at ICRs were established 
before tissue specification in response to environmental exposures and were similar across tissues and 
stable over the life course. Using GeneHub, the team found 28 ICUs related to all cancers investigated.19 
Future studies using ICR array data can investigate whether the contributions of early exposures to 
cancer can be quantified and whether other developmental windows of susceptibility exist.  

Integration of cell-free DNA epigenetic and antibody signals as signatures of exposure in 
Epstein-Barr virus-associated cancers 
Ben Gewurz, M.D., Ph.D., Harvard University 

Epstein-Barr virus (EBV) was the first human virus discovered to cause cancer. A particular challenge with 
EBV is that 95% of adults carry the virus, but only 200,000 cases of associated cancer occur per year, 
typically in specific populations. 

EBV was discovered about 60 years ago in sub-Saharan Africa, where a high incidence of Burkitt 
lymphoma occurred. Shortly after, researchers investigated a possible association between the virus and 
cancer. To determine if a relationship existed between antibody response to the virus and the onset of 
cancer, the team administered a survey of 45,000 children enrolled from birth, which showed elevated 
antibodies to a viral antigen that held true at the time of diagnosis.20 A few year after the conclusion of 

 
19 Jima DD, Skaar DA, Planchart A, Motsinger-Reif A, Cevik SE, Park SS, Cowley M, Wright F, House J, Liu A, Jirtle RL, 
Hoyo C. Genomic map of candidate human imprint control regions: the imprintome. Epigenetics. 
2022;17(13):1920-1943. doi: 10.1080/15592294.2022.2091815.  
20 Burkit D. A children's cancer dependent on climatic factors. Nature. 1962 Apr 21;194:232-4. doi: 
10.1038/194232a0.  



 

10 
 

the survey, an association between EBV and nasopharyngeal carcinoma was discovered. Antibody 
surveys again showed a higher antibody response in people with nasopharyngeal carcinoma.21  

Most recently, The Cancer Genome Atlas Program (TCGA) found that one out of four types of gastric 
cancer is associated with an EBV infection. In these cancers, the virus does not make new viruses, but 
rather exists as a latent genome inside the nucleus of cells. A salient feature of EBV-positive gastric 
cancer is the CIMP hypermethylation phenotype, the highest level of DNA methylation of any human 
cancer. Whether the virus is responsible for that phenotype or whether it stems from a whole cell 
response to shut down the virus is unclear. Regardless, the feature could potentially be used 
diagnostically to determine if somebody will likely develop cancer.  

One diagnostic approach is to use liquid biopsy. As the infected cells are killed by surveilling immune 
cells or dying as the tumor is evolving, they release DNA into the circulation that can retain methylation 
marks from the original cells. Then, a technology called cell-free methylated DNA IP sequencing 
(cfMeDIP-seq), can immunoprecipitate the methylated DNA fragments and sequence them using next 
generation sequencing.22 Another recently developed technology, VirScan, in which phages display a 
peptide from viruses such as EBV, can analyze as little as one microliter of serum and return a readout of 
antibody production. The results provide a high-resolution view of immune system response. Finally, 
next generation sequencing of T-cell receptors and machine learning can predict what T-cell receptors 
are responding to, such as viral or cancer antigens related to EBV.  

Research on viruses and cancer should develop approaches that integrate risk factors, viral load, 
serology, cell-free DNA methylation, and T/B-cell receptor signals. For example, researchers could use a 
risk score to search for associations between human leukocyte antigen and EBV-positive cancer in 
different populations. Next, they could obtain small blood samples from volunteers to determine viral 
load, as well as apply high-resolution serology screens such as VirScan to understand a person's response 
at different points in time. If a high risk presents, researchers could apply methylation DNA precipitation 
sequencing (cfMeDIP-seq) and TCR/BCR-seq. 

Chemical exposures from the microbiome 
Michael Fischbach, Ph.D., Stanford University 
Fischbach and colleagues developed a complex gut microbiome model system that was used to 
manipulate the levels of bile acids in colonized mice.23 When they removed bile acid metabolite-

 
21 Ji MF, Wang DK, Yu YL, Guo YQ, Liang JS, Cheng WM, Zong YS, Chan KH, Ng SP, Wei WI, Chua DT, Sham JS, Ng MH. 
Sustained elevation of Epstein-Barr virus antibody levels preceding clinical onset of nasopharyngeal carcinoma. Br J 
Cancer. 2007 Feb 26;96(4):623-30. doi: 10.1038/sj.bjc.6603609.  
22 Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, Zuzarte PC, Borgida A, Wang TT, Li T, 
Kis O, Zhao Z, Spreafico A, Medina TDS, Wang Y, Roulois D, Etayebi I, Chen Z, Chow S, Murphy T, Arruda A, O'Kane 
GM, Liu J, Mansour M, McPherson JD, O'Brien C, Leighl N, Bedard PL, Fleshner N, Liu G, Minden MD, Gallinger S, 
Goldenberg A, Pugh TJ, Hoffman MM, Bratman SV, Hung RJ, De Carvalho DD. Sensitive tumour detection and 
classification using plasma cell-free DNA methylomes. Nature. 2018 Nov;563(7732):579-583. doi: 10.1038/s41586-
018-0703-0.  
23 Cheng AG, Ho PY, Aranda-Díaz A, Jain S, Yu FB, Meng X, Wang M, Iakiviak M, Nagashima K, Zhao A, Murugkar P, 
Patil A, Atabakhsh K, Weakley A, Yan J, Brumbaugh AR, Higginbotom S, Dimas A, Shiver AL, Deutschbauer A, Neff 
N, Sonnenburg JL, Huang KC, Fischbach MA. Design, construction, and in vivo augmentation of a complex gut 
microbiome. Cell. 2022 Sep 15;185(19):3617-3636.e19. doi: 10.1016/j.cell.2022.08.003.  
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producing bacteria, Clostridium hylemonae DSM 15053 or Clostridium scindens ATCC 35704, from the 
mice, secondary bile acid production did not occur. The results suggested an opportunity to study how 
the bacteria individually affect secondary bile acids production.  

To investigate whether either of the two bacteria alone would be sufficient to metabolize bile acids in 
the gut, two additional communities were built: one with C. hylemonae but not C. scindens (ΔCh), and 
one with C. scindens but not C. hylemonae (ΔCs). Both communities had identical levels of other 
bacteria. Mice colonized by either community displayed normal bile acids pools. However, mice 
containing the C. scindens community showed high levels of aromatic amino acid metabolites compared 
to other communities. The profile of aromatic amino acid metabolites also shifted dramatically.  

Whether C. hylemonae or C. scindens was removed had little bearing on other bacterial levels. However, 
some organisms disappeared when either C. hylemonae or C. scindens were removed, and some 
organisms appeared from below the limit of detection. The findings indicate that the presence of certain 
bacteria is sufficient to dramatically change aromatic amino acid metabolite pool. The findings 
emphasized a need to determine microbiome exposures empirically, rather than by computational 
prediction. They also highlighted the potential influence of microbial ecology on drug/infection/chemical 
exposures. 

Discussion 
Key discussion points from Session 2 included: 

Continuous monitoring. Leveraging a technology like continuous glucose monitoring could be a 
powerful way of measuring metabolites and uncovering physiologic changes in real time. Using 
technology like wristbands or other easy-to-wear accessories could provide continuous information 
about molecules. Future research could investigate whether this approach could be used to examine 
tissue changes over time. 

Some data types are plastic. Mutational signatures are historical records of permanent genetic changes 
whereas some data types mentioned in this session are plastic, making it more challenging to capture 
their effect. Epigenetic marks are largely transient, except for some that are more stable depending on 
the developmental window and type of exposure. For example, viruses can cause changes to the 
methylome that persist. Regarding the metabolome, some metabolite levels change quickly, like those 
that respond to diet, but others are stable over time. Studying ephemeral and permanent data types 
such as these can provide insight into the mechanistic bases of disease. 

Metabolomics. The type of model microbiome described by Fischbach,23 could suggest causality 
between a specific molecule and the onset of cancer. For example, levels of the amino methionine, the 
methyl donor for methylation reactions, can alter the epigenome. For microbiome-derived molecules 
that are known to be difficult to control, the model could provide an opportunity to carry out 
mechanistically sound experiments.  

Aging (non-chemical exposures). Studies examining the interaction between exposures and the 
epigenome have shown a clear association with biological aging, although the mechanism is unknown. 
As people age, their immune response wanes, which can alter the balance between tumor viruses and 
host. Certain epigenetic enzymes like DNA methylases have been implicated in heart diseases. Epigenetic 
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clocks are well measured using DNA methylation but not for histone marks. Another future direction for 
aging studies could examine the tissue of tumor origin, rather than tumors, to determine whether early-
life environmental exposures affect the aging trajectory. The aging trajectory could also be factored into 
risk analysis by determining whether a person is on or off the aging trajectory.  

Session 3: Computational Challenges and Integrating Multi-Omics to 
Identify Signatures 
Session 3 was moderated by Mona Singh, Ph.D., of Princeton University. The session discussed the use of 
gene regulatory networks to embrace biological complexity; mutational signatures as a composite of 
DNA damage and repair mechanisms; the use of molecular signatures and single cell RNA sequencing to 
understand premalignant tumors; and computational challenges related to multi-omic integration. The 
session aimed to answer questions related to using different omics data types to identify signatures of 
exposure; what data types can be used to link signatures to genotoxic or nongenotoxic exposures; and 
using multi-omic signatures to improve cancer risk prediction models. 

State of the Science: Why networks mater: embracing biological complexity 
John Quackenbush, Ph.D., Harvard University 

A large part of multi-omic and life-course data analysis is organizing the data for interpretation. The 
concept of regulatory networks embraces biological complexity, which is important when considering 
large-scale data. Although every cell has the same genome, different genes are expressed in different 
tissues and organ systems. With analysis of gene expression data, it is important to recognize that 
expression of genes is driven by regulatory networks. Different regulatory networks represent different 
biological states, and networks capture differences that occurred based on a variety of factors, including 
mutations that alter transcription factor binding or changes in epigenetic regulation that affect gene 
expression. These are important to understanding the effectors of genetic programs. Differences in the 
topology and structure of networks can be used to identify connections that are distinct to individual 
phenotypes. This concept can be combined with gene expression data to understand what drives the 
manifestation of biological states. Taken further, networks can be thought of as representing not just 
individual physical states, but individual biomarkers for exploring health and disease. Overall, the 
structure of a network informs the understanding of the biology of the system being studied and 
networks in each tissue, in each biological state, in each individual are unique.  
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There are different ways to represent networks, all of which provide insight into a disease state. Some, 
such as DRAGON,24 PANDA,25 EGRET,26 LIONESS,27 are more strongly associated with gene regulatory 
networks.  

PANDA uses a network fusion approach to capture information about the way in which gene regulation 
occurs. For example, a transcription factor might regulate three genes, but if two of those genes are co-
expressed, the transcription factor likely co-regulates those genes. A network fusion approach is based 
on a technique called message passing, focused on protein-protein interactions, correlation data, and 
expression data, to establish an initial transcriptional network. By examining three starting networks — 
cooperative networks, regulatory networks, and co-regulatory networks — the system captures 
transcription factor interactions in the initial network, in an iterative process that arrives at the final 
network. 

An extension of this method that can be used with almost any gene regulatory network is a method 
called LIONESS, which allows for individual networks to be extracted from population data. It works by 
establishing a network representing contributions from many samples, i.e., network e(a). Then one 
sample, q, is removed from the network to give network e(a-q). Network e(a)- network e(a-q) is scaled by 
number of samples, and network e(a-q) is added back to give sample q’s network: Ns(e(a) - e(a-q)) + e(a-q) = 
e(q). This process can then be done for a population to obtain individual networks for each sample and 
can be treated as a way of linking structural differences in networks with diseases and disease states. For 
example, when investigating sex differences in colon cancer, it was shown that male and female 
networks have fundamental differences in the structure of the regulatory networks that were predictive 
of clinical endpoints, including response to chemotherapy. Among females, those females who had 
networks that more closely resembled male networks responded more like males to chemotherapy 
treatment.28 Another study investigated what different types of networks reveal compared to analyzing 
genomic data alone. Using data from The Cancer Genome Atlas and other large-scale pancreatic studies, 
Quackenbush and colleagues focused on two subtypes of pancreatic cancer, basal and classical, with 
respect to differentially expressed, co-expressed, or differentially targeting genes to understand what 
the different data types revealed about the disease. Gene expression data showed differences between 
subtypes, but none that were informative about the nature of the disease. The co-expression data 
showed some processes that linked back to disease development and progression, and some other 
processes that could not be seen otherwise, such as autocrine signaling. Gene regulatory networks were 
then built that linked co-expressed genes and their regulators. When looking at differential paterns of 

 
24 Shuta KH, Weighill D, Burkholz R, Guebila MB, DeMeo DL, Zacharias HU, Quackenbush J, Altenbuchinger M. 
DRAGON: Determining Regulatory Associations using Graphical models on multi-Omic Networks. Nucleic Acids Res. 
2023 Feb 22;51(3):e15. doi: 10.1093/nar/gkac1157.. 
25 Glass K, Hutenhower C, Quackenbush J, Yuan GC. Passing messages between biological networks to refine 
predicted interactions. PLoS One. 2013 May 31;8(5):e64832. doi: 10.1371/journal.pone.0064832.. 
26 Weighill D, Ben Guebila M, Glass K, Quackenbush J, Platig J. Predicting genotype-specific gene regulatory 
networks. Genome Res. 2022 Mar;32(3):524-533. doi: 10.1101/gr.275107.120. 
27 Kuijjer ML, Hsieh PH, Quackenbush J, Glass K. lionessR: single sample network inference in R. BMC Cancer. 2019 
Oct 25;19(1):1003. doi: 10.1186/s12885-019-6235-7.  
28 Lopes-Ramos CM, Kuijjer ML, Ogino S, Fuchs CS, DeMeo DL, Glass K, Quackenbush J. Gene Regulatory Network 
Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism. Cancer Res. 2018 Oct 1;78(19):5538-
5547. doi: 10.1158/0008-5472.CAN-18-0454.  
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regulation, there was an additional subset of immune-related, epigenetic, and cell cycle processes that 
were only found using the regulatory network approach to synthesize different data types.29 

Another method that can be used to integrate other types of data is EGRET,26 which accounts for how 
individual genetic backgrounds influence the paterns of expression and regulation that occur in 
individual networks. It starts with the same basic PANDA model, but for each individual in the data set, 
the network prior is modified based on data from expression quantitative trait loci (eQTL) studies about 
how genetic variance might perturb the binding of specific transcription factors. This method was used 
to show that genetic variants long associated with cancer risk were those that were associated with the 
regulation in transcription factor binding of oncogenes and tumor suppressor genes. This result showed 
the risk of developing disease is linked back to the genetic background individuals carry and indicates 
how those potentially mutated genes are regulated. This method can also be used to understand 
response to drugs and potential therapies. A database called GRAND,30 containing more than 200,000 
regulatory networks — including data from studies that have investigated drug treatments — has been 
used to identify new drugs and drug candidates by altering network structures.  

Overall, network methods have the potential to allow a principled approach to multi-omic analysis. By 
investigating changes in network structure, drivers of disease and potential therapeutic targets can be 
identified. In numerous applications, networks have been able to provide insight into disease that is not 
found using expression or co-expression data alone.  

Mutational signatures as a composite effect of DNA damage, repair, and other cellular 
processes 
Teresa Przytycka, Ph.D. National Library of Medicine (NLM) 

Mutational signatures are the result of a complex process that starts with DNA damage followed by DNA 
repair. What is observed as a mutational signature is a superposition of the two processes. However, in 
cancer, the DNA repair machinery is often compromised, so there may be a superposition of the same 
mutagenic processes with a somewhat altered DNA repair machinery, which will result in different 
mutational signatures. Researchers have looked at whether there is a different way to model mutational 
signatures to capture this non-linearity.  

A recently proposed model, RepairSig,31 approaches mutagenic processes as one of two types: primary, 
or those which are caused by the environment or chemical reactions and are reasonably approximated 
by an additive model, and secondary, or those related to DNA repair or some other DNA repair 
deficiency. The proposed total model is a composite model where primary processes are modified by the 
secondary processes, Mtotal=Mprimary*DQ (D= exposures, Q= repair signatures).  

 
29 Weighill D, Ben Guebila M, Glass K, Platig J, Yeh JJ, Quackenbush J. Gene Targeting in Disease Networks. Front 
Genet. 2021 Apr 23;12:649942. doi: 10.3389/fgene.2021.649942.  
30 Ben Guebila M, Lopes-Ramos CM, Weighill D, Sonawane AR, Burkholz R, Shamsaei B, Platig J, Glass K, Kuijjer ML, 
Quackenbush J. GRAND: a database of gene regulatory network models across human conditions. Nucleic Acids 
Res. 2022 Jan 7;50(D1):D610-D621. doi: 10.1093/nar/gkab778. 
31 Wojtowicz D, Hoinka J, Amgalan B, Kim YA, Przytycka TM. RepairSig: Deconvolution of DNA damage and repair 
contributions to the mutational landscape of cancer. Cell Syst. 2021 Oct 20;12(10):994-1003.e4. doi: 
10.1016/j.cels.2021.07.004.  
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To beter characterize mutational signatures, methods are needed to infer repair processes active in 
individual signatures. For example, cancer treatments are designed to induce cell death by DNA damage. 
However, tumor cells can initiate or adapt DNA repair pathways to resist these anticancer agents during 
chemotherapy. This presents an opportunity to uncover potential epistasis with chemotherapy drugs. 
There is also a need for new methods to examine relationships between signatures. This is currently 
determined by showing a signature has a high cosine similarity to another signature. Alternatively, a new 
approach, RePrint, can atempt to capture similarities between common repair mechanisms.32 

An important step to understanding mechanisms of mutational signatures is to combine the mutational 
signatures with other types of data, like gene expression data. Learning how a mutational signature is 
related to changes in gene expression may help uncover the processes behind signatures. To that end, 
two complementary methods were developed: EcoSig33 and NetSig.34 EcoSig is based on clustering; 
understanding mutational signatures present in a cancer; and correlation profiles of all genes, from 
clusters to the signatures, including clock-like signatures and cell cycle signatures. This approach allows 
for identification of the groups of genes that are related to the signatures. The NetSig model is a network 
that contains signatures and gene expression, and statistical methods are used to understand the 
information flow between genes and signatures. 

Understanding molecular signatures of response to exposure and development of 
premalignant lesions 
Joshua Campbell, Ph.D., Boston University 

Understanding early development of lung cancer, such as identifying key molecular changes that happen 
at the premalignant stage, can be useful for devising ways to intercept cancers before it progresses to an 
invasive lesion. This approach could be applied to understanding the effect of cigarete smoke exposure 
on molecular changes in the airway epithelium, for example.  

Lung squamous cell carcinoma is strongly associated with smoke exposure, and the cell of origin is 
thought to come from the central airway. The airway is a composite of many different cell types — basal, 
club, goblet, ciliary — that all work together for mucociliary clearance. Researchers performed single cell 
RNAseq on six never-smokers and six current smokers and clustered data to identify the major cell 
types.35 The data revealed three key findings. First, a clear transition occurred from club cells, 
predominant in the non-smokers, to a goblet-like phenotype in the smokers. Second, some detoxification 
genes were more enriched in particular cell types. For instance, an aldo-keto reductase (AKR1B10) was 

 
32 Wojtowicz D, Leiserson MDM, Sharan R, Przytycka TM. DNA Repair Footprint Uncovers Contribution of DNA 
Repair Mechanism to Mutational Signatures. Pac Symp Biocomput. 2020;25:262-273.  
33 Kim YA, Wojtowicz D, Sarto Basso R, Sason I, Robinson W, Hochbaum DS, Leiserson MDM, Sharan R, Vadin F, 
Przytycka TM. Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast 
cancer. Genome Med. 2020 May 29;12(1):52. doi: 10.1186/s13073-020-00745-2.  
34 Kim YA, Hodzic E, Amgalan B, Saslafsky A, Wojtowicz D, Przytycka TM. Mutational Signatures as Sensors of 
Environmental Exposures: Analysis of Smoking-Induced Lung Tissue Remodeling. Biomolecules. 2022 Sep 
27;12(10):1384. doi: 10.3390/biom12101384. 
35 Duclos GE, Teixeira VH, Autissier P, Gesthalter YB, Reinders-Luinge MA, Terrano R, Dumas YM, Liu G, Mazzilli SA, 
Brandsma CA, van den Berge M, Janes SM, Timens W, Lenburg ME, Spira A, Campbell JD, Beane J. Characterizing 
smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. Sci Adv. 
2019 Dec 11;5(12):eaaw3413. doi: 10.1126/sciadv.aaw3413.  
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upregulated and enriched in ciliary cells. Third, a novel peri-goblet intermediate cell state was found, 
which was halfway between a basal and goblet cell. This intermediate did not express any distinct cell 
markers but was a hybrid between the basal and goblet populations and represented a transitional state 
that was enriched in the smokers. This study is an example of how single cell RNAseq can be used to 
understand the effects of cigarete smoke or other exposures on complex tissues.  

In another study, biopsies of the abnormal premalignant lesions in the airway were profiled across 
different timepoints to understand the major drivers of the premalignant lesions. When performing DNA 
sequencing, the top driver was NOTCH1, which was enriched in dysplastic lesions compared to normal-
appearing lesions. Bulk RNAseq was performed on the same set of samples to correlate genes with 
NOTCH1 status, and clear signatures associated with NOTCH1 mutation status were found. To 
understand what the signatures meant, the researchers applied a standard functional enrichment for 
particular cell types. Among the genes upregulated in the NOTCH1 mutants, normal cell type signatures 
were not upregulated. However, when the team used the peri-goblet intermediate state signature from 
smokers, they found a strong association with the NOTCH1 mutant cell signatures. This finding suggests 
that NOTCH1 mutants caused cells to be in intermediate state and produce a dysplastic-like phenotype.  

Future opportunities in this area include improving algorithms and technologies to allow for somatic 
mutation calling in single-cell data. A Human Cell Exposure Atlas (similar to the Human Tumor Atlas 
Network36) would also be useful for defining cell states in the context of exposures.  

Thoughts on computational challenges & integrating multi-omics to identify signatures 
Mark Gerstein, Ph.D., Yale University 

Signature decomposition is challenging, and researchers have atempted to deconvolute observed 
mutations into a linear combination of known multinomial mutation probability distributions. One such 
method, SigLASSO,37 aimed to jointly optimize the sampling likelihood and use regularization, and to 
allow priors for soft-thresholding. Using a renal cancer dataset and investigating how it populated 
different signatures using both SigLASSO and another tool called deconstructSigs, researchers showed 
the tools produced very different results. The finding points to the issue of the lack of standards for 
these types of analyses.  

Therefore, to move the field forward, a number of challenges must be addressed. First, there is a need to 
develop reliable datasets to use as benchmarks. Further, gold-standard benchmarks must be defined for 
evaluating methods related to signatures and to evaluate performance. Second, regarding omics data, 
another challenge lies in determining how to calibrate, scale, and normalize different types of data 
relative to each other and in relation to signatures so that they can be integrated and their relative 
performance can be analyzed. Finally, many methods infer signatures based on linear approaches. Deep 
learning architectures may have relevant applications, though gathering sufficient training data also 
poses a challenge. 

 
36 htps://humantumoratlas.org/ 
37 Li S, Crawford FW, Gerstein MB. Using sigLASSO to optimize cancer mutation signatures jointly with sampling 
likelihood. Nat Commun. 2020 Jul 17;11(1):3575. doi: 10.1038/s41467-020-17388-x.  
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Discussion 
Key discussion points from Session 3 included: 

Deep learning. When using multi-omic data and large datasets, there is a potential opportunity to take 
advantage of deep learning. However, challenges include the large datasets required to train the model 
and the difficulty interpreting models as they get bigger and more complex. Deep learning could be 
useful for predicting signatures, but if the goal is to learn about a specific signature, linear deconvolution 
methods may be more relevant. It will also be important to constrain AI models with knowledge about 
biological systems, so they reflect evolutionary constraints. 

Data needs. One challenge when atempting to link signatures to exposures across studies is the 
integration of different data types from different samples. Having the same type of data for different 
samples across studies will be critical to answering questions on cancer progression and risk. There is 
also a need for normal data (i.e., from non-disease tissue) and data on large cohorts over time to 
understand the influence of epigenomics and genetics over a lifetime and their progression along the 
risk trajectory. Beter human datasets are needed for network analysis to be able to encompass age 
span.  

Challenges for transcriptomic and epigenomic signatures. For single cell RNAseq, challenges lie in 
having controls (unexposed people) and detailed exposure information. Also, limited clinical variables or 
quantitative measures of exposure exist for assessing correlation with transcriptomics and other omics 
signatures. When integrating different types of omics data, often different datasets reflect the same 
underlying transcriptional process, and integrating multiple data types can address underlying noise to 
uncover the stronger underlying biological signal. However, epigenetic reprogramming from early-life 
exposures can precede altered transcriptional profiles later in life, often through exposure to a second 
type of stressor, such as a high-fat diet. Exploiting known variables, such as sex differences, can also 
significantly contribute to developing network models for cancer risk and variable response to cancer 
therapies. 

Time course data. This type of data could remove signal to noise issues. However, time series data from 
humans is close to impossible to gather. Using pseudo-time methods to order individuals along a 
progression is an alternative approach.  

Standardization and benchmarking. To assess the performance of new computational and network 
approaches, datasets must be standardized, and benchmarks applied. Different data types have different 
error profiles, thus interpreting them in relation to each other when combining large datasets is 
challenging. The field should consider the best steps for validation and benchmarking. 

Session 4: Challenges in Tracking Signatures of Exposures 
Session 4 was moderated by Rebecca Fry, Ph.D., of the University of North Carolina at Chapel Hill. The 
session discussed inducing mutational signatures in various in vitro models, key questions and 
challenges related to signatures of exposure, and the use of metallomics for cancer diagnosis and 
prevention. The session aimed to answer questions related to tissues and specimens to target in 
searching for signatures; how long molecular signatures of exposure persist in carcinogenesis; if cell-free 
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markers can be used; whether signatures can quantify the exposure and reflect duration; and how acute 
and chronic exposures manifest as signatures. 

State of the Science: Inducing mutational signatures by environmental carcinogens and 
chemotherapeutic agents in vitro: progress, prospects, and limitations 
David Phillipps, Ph.D., King’s College 

There are a number of key questions related to tracking signatures of exposures in laboratory-based 
studies, such as the choice of cell type, if exposures are acute or chronic, and whether to use selection or 
cloning prior to examining signatures. Other questions should consider if signatures are unique or 
species/tissue-specific, are qualitative or quantitative, and if this approach can inform risk assessment. 
Three experimental systems that have been used to investigate some of these questions include mouse 
embryo fibroblasts (MEF), human-induced pluripotent stems cells (iPSC), and human tissue organoids. 

For example, MEFs were used to study mutations on a single gene and the whole genome using 
humanized mice.38 To investigate TP53 mutations, researchers treated MEFs in culture using various 
agents (benzopyrene, aristolochic acid, UV, etc.) and passaged them for several months. The MEFs 
eventually went through senescence crisis and emerged as immortalized cells, which were clones that 
contained TP53 mutations. The TP53 mutations roughly mirrored what was seen in human tumors 
exposed to the same agents. Whole genome sequencing of the clones revealed thousands of mutations 
specific to exposures, even though cells were only briefly exposed. While this system was effective given 
the significant number of mutations, the non-human cells and time intensity were drawbacks. 
Pluripotent stem cells (iPSCs) are an alternative option because they are cloneable, quasi-normal, have 
fairly unlimited growth potential, and have no selection process (i.e., they are not transformed). 

In another study, researchers investigated the effect of 79 environmental agents on iPSCs.39  Whole 
genome sequencing of subclones from cells treated at a concentration that resulted in 40-60% viability 
for 3-24 hours. Whole genome sequencing of the subclones revealed 41 mutagen-associated 
substitution signatures, six mutagen-associated double substitution signatures, eight mutation-
associated Indel signatures, and mutation asymmetries along the genome topography. There was a 
variable mutational burden — some agents did not give more mutations than the controls, and 
therefore detecting any signatures from those was not possible. Some had high mutation counts, like 
polycyclic aromatic hydrocarbons (PAHs) and Nitro-PAHs, alkylating agents, and chemotherapeutic drugs. 
Overall, some of the results were expected as observed with MEFs, but some unexpected results 
occurred. Also, some dissimilar agents gave similar signatures. When the experimental signatures were 
compared against COSMIC signatures, which represent those in human tumors, there were similarities. 
For example, aristolochic acid (AA) had strong similarity with COSMIC signature 22.  

 
38 Nik-Zainal S, Kucab JE, Morganella S, Glodzik D, Alexandrov LB, Arlt VM, Weninger A, Hollstein M, Straton MR, 
Phillips DH. The genome as a record of environmental exposure. Mutagenesis. 2015 Nov;30(6):763-70. doi: 
10.1093/mutage/gev073.  
39 Kucab JE, Zou X, Morganella S, Joel M, Nanda AS, Nagy E, Gomez C, Degasperi A, Harris R, Jackson SP, Arlt VM, 
Phillips DH, Nik-Zainal S. A Compendium of Mutational Signatures of Environmental Agents. Cell. 2019 May 
2;177(4):821-836.e16. doi: 10.1016/j.cell.2019.03.001.  
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A third system using human-derived organoids was assessed as part of the Mutographs2 project. The 
initial protocol involved cloning organoids, treating them, and cloning again before performing whole 
genome sequencing, which was time intensive. However, with the emergence of duplex sequencing, 
which sequences both DNA strands and therefore removes artifacts that occur during PCR, the protocol 
could be modified to remove cloning and instead simply treat the organoid with a mutagen, expand for 
seven to 10 days, isolate the DNA, and perform duplex sequencing. This approach was successful, and 
many of the compounds were metabolically activated efficiently by the organoids, which has not been 
achievable with iPSCs. Compared to other methods, there were some similarities, such as 
benzo(a)pyrene signature, which was similar to that from the iPSCs and COSMIC signature 4. A possible 
way to distinguish similar signatures from different compounds is by examining double-substitutions and 
Indels. The researchers also found that some signatures did not change from one tissue to another. For 
example, AA displayed the same signature in gastric, colon, kidney, pancreas, and liver tissues. 
Temozolomide had a similar signature in gastric organoids and COSMIC signature 11, but was very 
different in iPSCs. This was also tested in an MGMT knockout mouse which showed the same signature, 
suggesting the differences between the systems could be related to DNA repair. 

Investigating environmental carcinogens and chemotherapeutic agents in these three in vivo systems 
resulted in some key takeaways, including: 

• Specific mutational signatures of carcinogens can be detected in in vitro experimental models. 
• NanoSeq (duplex sequencing) identifies genome-wide mutations without the need for 

subcloning. 
• Organoids are a useful, but expensive, in vitro model that enable long-term culture and testing 

of cells from primary tissues; they are more metabolically competent than iPSCs. 
• Some agents produced signatures after chronic treatment. 
• Initial findings indicate that signatures are not tissue-specific, but mutational signatures can be 

influenced by DNA repair. 
• Mutational signatures from exogenous exposures may not always be apparent.  

Key questions and challenges 
John Essigmann, Ph.D., Massachusets Institute of Technology 

A typical mutational spectrum can pose the question: Why do these paterns look the way they do? Key 
questions and challenges related to tracking signatures of exposure include: 

• The complexity of mutational spectra points to a need to provide chemical/biological 
explanations for the types of mutations induced and address why the mutational paterns are 
punctuated by hot and cold spots. The respective roles of adduct formation, adduct repair, and 
adduct mutagenic bypass in molding end-stage mutational spectra must be defined. 

• Animals and cell-based models with defined DNA repair and replication defects are needed to 
recapitulate mutational paterns that occur in human cancers. 

• Chemoprevention (e.g., agents such as sulforaphane) can be effective, but high-throughput 
systems to evaluate agents that will erase or mitigate mutational spectra are needed. However, 
there can be a downside to such agents, as some make tumor tissues resistant to 
chemotherapeutic agents. 
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• Dose-response is important, but working with the right doses given likely human exposures and 
the fact that dose-responses are often non-linear is a challenge. Further, high doses saturate 
DNA repair systems and people might never experience those doses in real life. 

• Life-course maters. Young animals are more sensitive to DNA damage, and there is a need to 
develop methods to look at spectra as early as possible, even in utero. 

• Simple “founder” mutational spectra by carcinogens mature into much more complex tumor 
spectra, so following mutational evolution longitudinally in animals is necessary. This approach 
will help assess whether normal-looking tissue surrounding the tumor retains the simple 
“founder” spectrum and if that tissue can be used to understand the history of all mutagenic 
exposures experienced by the animal. 

• Actionable advice to move the field forward includes: 
― Emphasize dose-response studies to use doses that are environmentally realistic, which 

requires more accurate and sensitive sequencing tools. 
― Distinguish spectra from different mutagen exposures in mixtures. 
― Integrate mutational signature/spectra studies with other omics and share tissues across 

platforms. 
― Carry out proof of concept for liquid biopsy starting with something relatively simple 

(e.g., temozolomide-treated patients/animals). 
― Investigate the role of a damaged nucleotide pool as a source of mutational 

spectra/signatures (e.g., 8-oxoG). 

Challenges in tracking signatures of exposure 
Yvonne Fondufe-Mittendorf, Ph.D., Van Andel Institute 

When examining how a toxicant drives disease, it is important to determine how to mimic human 
exposure, which is often to a mixture and not a single compound. The challenge with mixture models is 
determining how many toxicants to use, the chemical composition of each toxicant in the mixture, the 
dose of each toxicant, and the number of exposures.  

Another challenge is differentiating the initiator, driver, and passenger mutations and the epigenetic 
mechanisms that might drive the disease process. For example, researchers built a model for inorganic 
arsenic carcinogenesis and examined cells exposed to arsenic over time. Cells became migratory in 
transwell migration assays (and reverted with time) and wound healing, more colonies were formed, and 
the cells became more invasive with the appearance of protrusions. When these were injected into 
mice, they formed tumors. This model could help to understand what biomarkers reflect each process. 

A simple assay to test what biomarker to use would be helpful. Early-expressed circular RNAs remain 
circulating in the blood throughout the transformation process and are stable. Researchers also found a 
circular RNA that co-expresses with its linear mRNA in both acute and chronic conditions. Because 
circulating blood can be measured easily and circular RNAs appear early as cells are exposed to arsenic, 
they could be used as a potential biomarker.  
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Metallomics and cancer: opportunities for diagnosis, prevention and intervention 
Ana Navas-Acien, M.D., Ph.D., Columbia University 

Metals are a class of carcinogens that can provide opportunities for prevention and intervention and 
diagnostics. Metallomics is the collective characterization, quantification, and speciation of metal and 
metalloid molecules that translate into the structure, dynamics, and function of an organism or system. 
Advances in technology allow for the characterization of elements (Inductively coupled plasma mass 
spectrometry (ICPMS)), species (High performance liquid chromatography (HPLC)-ICPMS)), and isotopes 
(Multi-Collector (MC)-ICPMS)). The precise quantification of metal ions is a recent development and may 
complement information on metabolites, pharmacokinetics, pharmacodynamics, and toxicity to 
elucidate what is occurring in the presence of cancer. A proof-of-concept study for cancer diagnosis 
found that zinc isotopes in urine are related to pancreatic cancer, especially lighter zinc.40  

An important consideration for using this metallomics approach in humans is how to access the target 
tissue. For example, multi-omics technology can be combined with measures of metals and DNA 
methylation to develop biomarkers of lead levels in bone. Using this approach had similar results to 
established measures of lead in the patella and tibia.41 This approach could be used in the future to 
measure different carcinogens at the target tissue level and connect the new biomarkers with health 
endpoints.  

Metallomics also factors into chemoprevention when considering whether chelation could prevent 
cancer through the elimination of divalent toxic metals. For example, cadmium, which has an extremely 
long half-life, could be chelated and eliminated with EDTA. Chelation therapy has already been shown to 
be beneficial for cardiovascular disease, and a replication trial is ongoing.42 Applying this preventative 
approach to cancer, while provocative, could be promising. 

Discussion 
Key discussion points from Session 4 included: 

Prioritizing measurements for molecular signature analysis. In considering which measurements are 
most critical for molecular signatures analysis, one approach is to focus on using already-available 
technologies and data, such as DNA methylation arrays, which are widely accessible through cohort 
studies. For example, when determining lead biomarkers, most studies do not have whole blood samples 
to measure lead, so researchers can consider using DNA methylation array data to develop biomarkers 
for lead levels. Distinguishing biomarkers (e.g., those associated with cancer initiation versus promotion 

 
40 Schilling K, Larner F, Saad A, Roberts R, Kocher HM, Blyuss O, Halliday AN, Crnogorac-Jurcevic T. Urine 
metallomics signature as an indicator of pancreatic cancer. Metallomics. 2020 May 27;12(5):752-757. doi: 
10.1039/d0mt00061b.  
41 Colicino E, Just A, Kioumourtzoglou MA, Vokonas P, Cardenas A, Sparrow D, Weisskopf M, Nie LH, Hu H, Schwartz 
JD, Wright RO, Baccarelli AA. Blood DNA methylation biomarkers of cumulative lead exposure in adults. J Expo Sci 
Environ Epidemiol. 2021 Feb;31(1):108-116. doi: 10.1038/s41370-019-0183-9.  
42 Lamas GA, Anstrom KJ, Navas-Acien A, Boineau R, Kim H, Rosenberg Y, Stylianou M, Jones TLZ, Joubert BR, 
Santella RM, Escolar E, Aude YW, Fonseca V, Elliot T, Lewis EF, Farkouh ME, Nathan DM, Mon AC, Gosnell L, 
Newman JD, Mark DB; TACT2 Investigators. The trial to assess chelation therapy 2 (TACT2): Rationale and design. 
Am Heart J. 2022 Oct;252:1-11. doi: 10.1016/j.ahj.2022.05.013.  
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and maintenance) can be identified using model systems applied to human studies, which often reflect 
maintenance biomarkers. 

Applying signatures to improve cancer prevention. Understanding the mechanisms for cancer 
prevention is important. For example, understanding what causes cancer as revealed through readouts 
like COSMIC signatures could lead to preventive measures. It is also important to consider biochemical 
pathways induced by preventive agents to ensure a growth advantage is not being provided to cancers 
that may be present. Linking exposures to signature(s) is needed to establish causality.  

Signatures to quantify duration of exposure. DNA methylation-based biomarkers could reflect past 
exposures. Circular RNA biomarkers could also reflect duration of exposure because research has shown 
that increasing the dose of exposure increases circRNA expression. Testing in human samples to 
determine if the biomarker is present in blood samples and whether it is correlated to a specific 
exposure is a next step. DNA adducts could provide another way to monitor exposure. 

Mixtures. Using a multi-omic approach in a standardized system, like organoids, to examine DNA and 
protein adducts and lesions, along with related gene expression, could be an approach to studying 
mixtures. A key issue with mixtures is that they are specific to a certain population, and signatures for a 
mixture in one population are difficult to generalize to another population. However, advancements in 
statistical methods may help address this challenge. There is interest among statisticians to develop 
beter methods for how to transport findings from one population to another that may have different 
mixture compositions. Dose-response is not linear, which poses another challenge for replication across 
different populations with different doses. 

Proteins. Investigating whether mutational paterns in a COSMIC array reveal immunogenic information 
about proteins after translation would be helpful. Proteins may be valuable because biobanks are full of 
plasma, and protein adducts are persistent and abundant. 

Session 5: Population-Based Cancer Studies 
Session 5 was moderated by Paul Brennan, Ph.D., of the International Agency Research on Cancer. The 
session discussed using signatures of exposure in epidemiologic studies, precision environmental health 
for cancer prevention, the environmental exposome in cohort cancer studies, and race and ethnicity as 
modifiers of exposure. The session aimed to answer questions related to how molecular signatures can 
be used to identify, quantify, and predict cancer-related environmental exposures in human populations; 
the potential for using signatures of exposure to screen populations for cancer risk assessment; the 
effect of genetic background variation on signatures; appropriate biological samples for assessment of 
signatures; and how timing affects signatures. 

State of the Science: Using molecular signatures of exposures in environmental 
epidemiologic studies of cancer 
Wei Zheng, M.D., Ph.D., Vanderbilt University 

Throughout lifetime, humans are exposed to a large set of chemicals and their mixtures, but most 
environmental exposures have not been studied in relation to cancer risk. It is also unclear how low-level 
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exposures in the general environment may be related to cancer and if there is any synergistic effect of 
exposure to mixtures.  

Low-income and racial/ethnic minority populations tend to live in heavily polluted and economically 
deprived communities, but they are underrepresented in epidemiologic studies.  

Biomarkers to assess environmental exposures are limited.  For many of these biomarkers, the internal 
dose, biologically effective dose, and early biologic effects in humans remain to be validated. Molecular 
signatures may measure the early biologic effect and altered structure/function. It is well established 
that environmental exposures can alter cellular functions and cause changes in DNA, lipids, and proteins, 
and these signatures may be detectable. 

Similar approaches to the iPSC model could be used to discover molecular signatures using epigenomics, 
transcriptomics, proteomics, and metabolomics tools. The challenge is translating these findings to 
humans since these signatures may appear differently in cell culture models. In addition to in vitro 
models, molecular signatures can be studied directly in humans. Many CpG sites have been identified in 
relation to environmental exposures such as tobacco, alcohol, maternal diet, air pollutants, chemicals, 
drug use, BMI, and age. For example, an epigenome-wide association study (EWAS) of about 15,900 
adults using DNA methylation identified 2,623 more CpG sites in current smokers compared to never-
smokers and 185 more CpG sites in former smokers compared to never-smokers. Additionally, dose-
response associations were identified for about 60% of the CpGs with pack-years smoked. Thirty-six 
CpGs did not return to never-smoker levels, even after 30 years of smoking cessation.43 These types of 
association studies are isolated, and with the exception of studies focused on aging and smoking, few 
have put these signatures together to build a model to assess exposure. 

EWASs can also be used for the identification of endogenous metabolites associated with environmental 
exposures, but the key is the need to assess external exposures as well. For example, the Deep 
Exposome Project, part of the Southern Environmental Health Study, assesses the external exposome 
using polydimethylsiloxane (PDMS) wristbands — which can measure about 4,000 signals by gas 
chromatography-high resolution mass spectrometry (GC-HRMS) — as well as surveys and geographic 
information system (GIS) data. Using metabolomics of blood and urine, researchers assess external 
exposome components that have infiltrated the blood, as well as endogenous metabolites formed in 
response to the external exposures. The internal exposome is also assessed via the epigenome with 
about 850,000 CpGs by BeadChip and via inflammation biomarkers. The goal is to assess both the 
external and internal exposome, identify biomarkers/molecular signatures for external exposures and 

 
43 Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, Guan W, Xu T, Elks CE, Aslibekyan S, 
Moreno-Macias H, Smith JA, Brody JA, Dhingra R, Yousefi P, Pankow JS, Kunze S, Shah SH, McRae AF, Lohman K, Sha 
J, Absher DM, Ferrucci L, Zhao W, Demerath EW, Bressler J, Grove ML, Huan T, Liu C, Mendelson MM, Yao C, Kiel DP, 
Peters A, Wang-Satler R, Visscher PM, Wray NR, Starr JM, Ding J, Rodriguez CJ, Wareham NJ, Irvin MR, Zhi D, 
Barrdahl M, Vineis P, Ambatipudi S, Uiterlinden AG, Hofman A, Schwartz J, Colicino E, Hou L, Vokonas PS, 
Hernandez DG, Singleton AB, Bandinelli S, Turner ST, Ware EB, Smith AK, Klengel T, Binder EB, Psaty BM, Taylor KD, 
Gharib SA, Swenson BR, Liang L, DeMeo DL, O'Connor GT, Herceg Z, Ressler KJ, Conneely KN, Sotoodehnia N, Kardia 
SL, Melzer D, Baccarelli AA, van Meurs JB, Romieu I, Arnet DK, Ong KK, Liu Y, Waldenberger M, Deary IJ, Fornage M, 
Levy D, London SJ. Epigenetic Signatures of Cigarete Smoking. Circ Cardiovasc Genet. 2016 Oct;9(5):436-447. doi: 
10.1161/CIRCGENETICS.116.001506.  
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biological responses, evaluate within-person variations, conduct EWAS to identify potential 
environmental carcinogens, and develop exposome risk scores. 

Many molecular signatures have been identified in relation to environmental exposures. However, few 
have been validated for exposure assessment in epidemiologic studies. Proper use of biomarkers will 
greatly facilitate epidemiologic studies to assess exposures and determine causality. 

Precision environmental health: an emerging approach for cancer prevention 
Jesse Goodrich, Ph.D., University of Southern California 

Precision environmental health is the intersection of precision medicine and environmental health. 
Overarching goals include understanding how the totality of individual environmental exposures impact 
biological factors and cause disease; identifying molecular signatures; and developing personalized 
prevention and intervention strategies. Key to reaching these goals is integrating the exposome with 
omics data to enhance understanding of cancer risk and help develop novel prevention strategies. 

For example, using data from the Multiethnic Cohort Study,44 researchers examined PFAS and risk for 
cellular carcinoma. Through untargeted metabolomics, they found that PFAS exposure was associated 
with higher risk of hepatocellular carcinoma (HCC) and identified metabolites that may link 
perfluorooctanoic acid (PFOS) exposure to outcome. For instance, glucose and bile acids associated with 
PFOS were also associated with higher risk for HCC. Approaches that integrate multiple omics are 
essential to improving understanding of the impact of environmental exposures on cancer.  

A second case study used data from the Human Early Life Exposome (HELIX) Study, including in utero 
arsenic exposures and omics data (DNA methylation, gene expression, and proteins) to assess risk of 
childhood leukemia and non-alcoholic faty liver disease (NAFLD). Researchers atempted to integrate 
this data to identify children at highest risk of liver injury, which could lead to increased risk of cancer 
later in life. They extended the known method of Latent Unknown Clustering Integrating Multi-View 
Data45 and identified groups of children defined by their levels of arsenic exposure and disease risk. Two 
groups had the same level of exposure, but differing disease risk because their transcription profiles 
varied. This study shows that groups of individuals can have different disease risks despite the same 
environmental exposure, and they can be identified using omics profiles. 

Actionable steps towards cancer prevention using precision environmental health include: 

• Involving transdisciplinary exposure scientists to ensure population-based studies incorporate 
measures of the exposome. 

• Investigating windows of exposure, windows of susceptibility, and potentially windows of omics 
profiles to determine the best point to identify altered omics profiles.  

• Measuring multiple omics layers. 

 
44 Goodrich JA, Walker D, Lin X, Wang H, Lim T, McConnell R, Conti DV, Chatzi L, Setiawan VW. Exposure to 
perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep. 2022 Aug 
8;4(10):100550. doi: 10.1016/j.jhepr.2022.100550.  
45 Peng C, Wang J, Asante I, Louie S, Jin R, Chatzi L, Casey G, Thomas DC, Conti DV. A latent unknown clustering 
integrating multi-omics data (LUCID) with phenotypic traits. Bioinformatics. 2020 Feb 1;36(3):842-850. doi: 
10.1093/bioinformatics/btz667.  
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• Recruiting larger sample sizes, especially when looking at specialized markers of exposure.  

The environmental exposome in cohort studies of cancer 
Karin Michels, Sc.D., Ph.D., University of California, Los Angeles 

When considering population-based cohorts, studies investigate environmental exposures and their 
molecular signatures, or molecular signatures and their association with cancer, but incorporating all 
three into one study is challenging given the latency of cancer. However, including the entire sequence 
— environmental exposure, molecular signature, and cancer — in one study is important for assessing 
causality. 

Challenges in studying the environmental exposome in cohort studies of cancer include the fact that 
many environmental exposures do not have suitable biomarkers or biomarkers in an accessible tissue. 
Short half-lives require multiple samples (e.g., BPA), which may not be possible in a prospective study. 
There are also varying windows of susceptibility for different chemicals. 

Opportunities to address these challenges include focusing on known windows of susceptibility and 
chemicals with known long-lasting molecular signatures. Developmental Origins of Health and Disease 
(DOHaD) should also be considered, given that the early-life exposures leave long-lasting molecular 
signatures that, in effect, serve as “memories” of the early exposome. Epigenetics is suspected to be the 
most important in DOHaD phenomena, but the microbiome likely also plays a role.  

Future directions for this field should include creating an inventory of existing prospective cohort studies 
that can be exploited for their existing biorepositories to link environmental exposures to stable 
molecular signatures. Multiple biospecimens could be used, including blood, urine, stool, hair, nails (E.g. 
Breast Cancer and Environment Research Program (BCERP) cohorts46 and Avon Longitudinal Study of 
Parents and Children (ALSPAC)47). In addition, appropriate intermediate endpoints should be defined for 
cancer, like mammographic density or colon polyps, to fill gaps in the sequence from exposure to cancer. 
Considering how future cohort studies should be designed, and determining which samples, 
biospecimens, and information are missing from existing cohorts would also be helpful. 

Race/ethnicity as a modifier of exposure and molecular signatures 
Loic Le Marchand, M.D., Ph.D., University of Hawai’i 

Of similarly exposed individuals, only few will develop cancer; considering race and ethnicity could help 
explain why. Comparing racial or ethnic groups living in the same environment magnifies inter-individual 
differences (in exposure and biology) that may contribute to disease development. In most cases, these 
subtle differences are also present in racially and culturally homogenous populations but at lower 
frequency and thus are not as apparent. This concept can be demonstrated with data from the 
Multiethnic Cohort Study (MEC).  

 
46 htps://bcerp.org/ 
47 htps://www.bristol.ac.uk/alspac/ 

https://bcerp.org/
https://www.bristol.ac.uk/alspac/
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In one study, researchers investigated ethnic differences in risk associated with body mass index (BMI) 
and type 2 diabetes48 or breast cancer49 and found several important differences: Japanese Americans 
and Native Hawaiians with higher BMIs had higher risk for both type 2 diabetes and breast cancer. They 
further investigated the association by looking at body fat composition. Specific fat tissues are more 
metabolically active, like visceral fat, and are more strongly associated with diabetes, hypertension, and 
heart disease. They found significant differences in visceral fat, adjusted for dual-energy X-ray 
absorptiometry total adiposity. At the same level of adiposity, Japanese American and Hawaiians had 
higher amounts of visceral fat, while African Americans had lower amounts.50 The team developed a 
prediction score for visceral fat using nine biomarkers and applied it to the breast cancer cases. After 
adjusting for BMI and other risk factors, they found an association of 1.5 for upper level of visceral fat 
score. A two-fold increase was found for Japanese Americans. Overall, these findings show that BMI is 
not optimal for developing an omic signature of obesity.  

Another study investigating smoking also found major risk differences in the association of smoking and 
lung cancer, with about 50% higher risk for African American and native Hawaiians compared to 
Caucasians, and a 50% lower risk for Japanese and Latinos compared to Caucasians.51 When looking at 
internal smoking dose (total nicotine equivalents adjusted for cigaretes per day) as a measure of 
smoking, Japanese had lower internal smoking dose compared to Caucasians and African Americans.52 
Researchers then explored reasons for differences in the uptake of nicotine per cigarete and found the 
most likely reason for lower uptake in Japanese participants was a higher frequency of polymorphisms in 
the CYP2A6. People of Japanese heritage often have more non-functional or deleted alleles, meaning 
they take in less nicotine per cigarete, which could explain their lower risk of lung cancer.53 To explain 
the higher uptake of nicotine per cigarete for African Americans, researchers are looking at whether 
contextual factors, such as social stress, might be a reason. Overall, smoking history is not optimal for 
developing an omics signature of smoking dose. 

To identify signatures of exposure, there is a need to assess multiple omics in a standardized way in well-
characterized samples. However, exposure measurements must first be optimized by accounting for 

 
48 Maskarinec G, Grandinetti A, Matsuura G, Sharma S, Mau M, Henderson BE, Kolonel LN. Diabetes prevalence and 
body mass index differ by ethnicity: the Multiethnic Cohort. Ethn Dis. 2009;19(1):49-55.  
49 White KK, Park SY, Kolonel LN, Henderson BE, Wilkens LR. Body size and breast cancer risk: the Multiethnic 
Cohort. Int J Cancer. 2012 Sep 1;131(5):E705-16. doi: 10.1002/ijc.27373.  
50 Lim U, Monroe KR, Buchthal S, Fan B, Cheng I, Kristal BS, Lampe JW, Hullar MA, Franke AA, Stram DO, Wilkens LR, 
Shepherd J, Ernst T, Le Marchand L. Propensity for Intra-abdominal and Hepatic Adiposity Varies Among Ethnic 
Groups. Gastroenterology. 2019 Mar;156(4):966-975.e10. doi: 10.1053/j.gastro.2018.11.021.  
51 Haiman CA, Stram DO, Wilkens LR, Pike MC, Kolonel LN, Henderson BE, Le Marchand L. Ethnic and racial 
differences in the smoking-related risk of lung cancer. N Engl J Med. 2006 Jan 26;354(4):333-42. doi: 
10.1056/NEJMoa033250.  
52 Park SL, Carmella SG, Ming X, Vielguth E, Stram DO, Le Marchand L, Hecht SS. Variation in levels of the lung 
carcinogen NNAL and its glucuronides in the urine of cigarete smokers from five ethnic groups with differing risks 
for lung cancer. Cancer Epidemiol Biomarkers Prev. 2015 Mar;24(3):561-9. doi: 10.1158/1055-9965.EPI-14-1054.  
53 Park SL, Tiirikainen MI, Patel YM, Wilkens LR, Stram DO, Le Marchand L, Murphy SE. Genetic determinants of 
CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity. 
Carcinogenesis. 2016 Mar;37(3):269-279. doi: 10.1093/carcin/bgw012.  
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important modifiers, such as race and ethnicity, genetics, and, possibly, contextual variables like social 
determinants of health. Differences can be expected in omics signatures for racial and ethnic minorities. 

Discussion 
Key discussion points from Session 5 included: 

Windows of susceptibility. Available population studies do not always overlap with windows of 
susceptibility because most recruit middle-aged individuals. The BCERP puberty cohort is an example of 
a study that may address windows of susceptibility by enrolling girls 6-8 years of age to study the effect 
of puberty as an indicator of breast cancer risk. A study that contains cohorts focused on different 
windows of susceptibility with the same outcome and environmental chemical exposure would be 
useful. A national birth cohort of lifetime study should also be considered. Another future direction 
could identify markers that reflect early-life exposure, like methylation signatures that reflect prenatal 
exposure to tobacco smoking. 

Population-based studies for ubiquitous exposures. The first challenge in studying ubiquitous 
exposures is determining how to measure and quantify them, because large differences in dose and 
interactions with other chemicals could complicate analysis. For example, exposures to PFAS are 
ubiquitous, but variability exists even within highly exposed populations. Disease biomarkers like 
methylation, age, or changes in metabolomic profiles could inform an EWAS to identify potential 
environmental carcinogens. Considering diversity — different ethnic groups in different geographic 
locations — could provide insights to this challenge as well. 

Need for transdisciplinary research teams. Researchers who work with epidemiological cohorts and 
researchers who work with experimental model systems can come together to collaboratively tackle 
more comprehensive cancer research questions. Language barriers may exist, but making those 
connections, especially with organoid models, will be important.  

Other forms of tissue for biomarkers. Mutational signature studies can be incorporated into population-
based studies using circulating free DNA, urine, oral cells, and buccal cells, where mutational signatures 
can be measured using Nanoseq or duplex sequencing. These types of cells could represent “normal” 
tissue and are easily available. Hair and nail samples would also be useful as time-integrated markers for 
assessing long-term exposures.  

Precision prevention. A challenge with precision prevention is that implies that a large proportion of the 
burden of cancer comes from a small part of the population. Integrating more omics data could 
potentially improve risk stratification, and different groups could be identified based on different omics 
profiles even with similar exposures.  

Session 6: Workshop Summary and Future Directions 
The final session was moderated by co-chairs Hannah Carter, Ph.D., and Cheryl Walker, Ph.D. Moderators 
from each session recapped key questions, challenges, and opportunities. Afterward, all speakers and 
moderators convened to discuss future directions for the field. Discussions aimed at identifying the most 
pressing scientific needs to move the field forward and how this information can be used to improve 
cancer prevention. 
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Session Summaries 
Session 1: Mutational Signatures of Exposure in Cancer, Ludmil Alexandrov, Ph.D. 
Key gaps and opportunities 

• A complex and intricate connection exists between environmental carcinogens, mutational 
signatures, and cancer risk: 

― Some carcinogens have clear mutational signatures and contribute to cancer risk 
through mutagenesis. 

― Carcinogens can also cause large numbers of mutations without affecting cancer risk. 
― Carcinogens may act through mutational mechanisms, e.g., by activating endogenous 

processes. 
― There are also non-mutagenic carcinogens that drive cancer through other mechanisms 

(e.g., non-mutagenic promoting agents). 
• Key major gaps in mutational signatures research: 

― For most mutational signatures, there is a limited direct link with cancer causality. 
― Many mutational signatures are orphaned, and their underlying mutational processes 

and molecular mechanisms are unknown. 
― For some cancers, mutational signatures do not explain international differences in 

cancer risk (e.g., ESCC) or known environmental exposures (e.g., asbestos). 
• Opportunities in mutational signatures research: 

― Beter understanding of mutagenic and non-mutagenic carcinogenesis. 
― Integrating mutational signatures with other data modalities for providing a beter 

personalized understanding of cancer risk. 
― Detection of mutational signatures in normal tissues of healthy individuals. 
― Utilizing mutational signatures (in combination with other measurements) for predictive 

understanding of cancer risk. 
Needs for the next five years 

• Generation of additional data modalities (e.g., multi-omics, microbiomics, adductomics, etc.) 
from multiple tissues in clinically and epidemiologically well-annotated cohorts, such as cancer 
patients, matched healthy controls, and children (for tracking early-life exposures and their role 
in cancer later in life). 

• Beter mathematical approaches and additional computational methods for holistic integration 
and examination of multi-modal datasets. 

• Reconstruction of mutagenesis (and other molecular processes) from the first cell to develop 
more complete predictive understanding of its role in cancer (and other diseases). 

Applications to cancer prevention 
• Moving from research settings to the field (example SBS22) to improve: 

― Ability to detect signatures in healthy individuals. 
― Cost-effective biomarkers that provide quantitative predictions. 
― Intervention strategies for cancer prevention (e.g., public engagement, policy, 

chemoprevention, etc.). 
• There is a limited general commitment to cancer prevention (when compared to treatment and 

diagnostics). Students and researchers, research institutions, and funding agencies are critical 
for advancing this field. 
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Session 2: Other Data Types as Signatures of Exposure in Cancer, Scot Auerbach, Ph.D. 
Key gaps and opportunities 

• Further resolution of environmentally induced epigenetic changes and how they play a role in 
the formation of pre-cancer and cancer — they can be detected and associated, but it is often 
unclear what influence they actually have. This effort will require functional omic (proteomics, 
metabolomics, phenomics, etc.) linkage to epigenetic changes. 

• Understanding the complex, systems-level dark energy/mater (non-mutational) that drive the 
causal aspects of the carcinogenic process and to what degree modifiable environmental 
exposures influence these processes. This will require more advanced data- and systems biology-
modeling approaches. 

• Development of liquid biopsy/cell-free/exosome omics (genome, epigenome, transcriptome, 
proteome, and metabolome) technologies to identify non-mutational signatures of cancer risk 
across all tissues and organs. 

• Understanding the complex ecological landscape (both temporal and systemic) related to the 
development of pre-cancerous states. 

• Development of longitudinal cohorts and sample resources with robust metadata that allow for 
greater temporal resolution of the environmental carcinogenic processes and application of 
causal models that can deconvolute drive versus passenger processes. 

Needs for the next five years 
• Initiation of longitudinal studies and samples starting early in life, serial sampling, and 

technologies for continuous monitoring of major dietary components (e.g., glucose). 
• Development of technologies that can use non- and minimally invasive samples to allow for 

detection of tissue/organ age/cancer risk state (e.g., epigenetic clocks). 
• Development of signatures of disease state based on more transient or dynamic technologies 

(e.g., metabolomics, transcriptomics) that can serve as intermediate phenotypes and flags for 
clinical intervention. 

• Data to beter understand the complex genetic, temporal, and ecological influences that drive 
promotional processes and modify the risk status in different tissues and organs. More empirical 
data is needed to model what effects measured changes have on cancer risk. 

• More effective integrations of multi-omic technologies, with the goal of understanding the 
relationship between mutagenesis, promotion, and the ecological landscape (e.g., microbiome, 
metabolome) of interactions that impact carcinogenic processes. 

• Technologies that can provide more accurate records of impactful exposures (e.g., adductomics, 
epigenetic changes). 

• A beter understanding of the epistasis between the genome (background genetics) and cancer 
promotional process influences in the environment. 

Overall thoughts 
• The development of cancer is a highly complex process with profound epistasis at many levels. If 

substantive progress in understanding how this happens in a genetically and culturally diverse 
human population is to be made, there are some critical needs: 

― Well annotated longitudinal data (control people to themselves over time), and massive 
amounts of it. This points to a need for: 
 Technologies that use minimally to non-invasive methods to query deeply and 

specifically into complex biological paterns across all organs and tissues. 
 Technologies that can capture longitudinal changes in the exposome. 
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― Beter solutions to the “small n, big p problem.” Causal inference, data reduction, and 
Bayesian methods could address this challenge. 

― Complex test systems to validate causal inferences. 
 
Session 3: Computational Challenges and Integrating Multi-Omics to Identify Signatures, Mona Singh, 
Ph.D. 
Key gaps and opportunities 

• There is a need to move beyond mutational signatures. 
• Within mutational signatures: 

― Need new methods to capture contributions of DNA damage versus DNA repair, which 
interact together to yield mutational profiles. 

― Need beter methods to compare signatures to unveil common DNA repair mechanisms 
and common exposures. 

• Network approaches are a powerful paradigm to integrate mutations, epigenetics, expression, 
and pathways. 

• With respect to machine learning, 
― The most current mutation signature detection methods are linear. 
― More powerful deep-learning methods need significantly more data. 
― Other nonlinear machine learning methods may yield good performance while being 

more interpretable. 
• Methods for linking signatures to exposures need access to data about the molecular impacts of 

exposures. 
• There is a need for beter validation of methods to detect signatures and for gold-standard 

benchmarks. 
Needs for the next five years 

• Large omic datasets derived from model systems and cell lines exposed to known combinations 
and timings of different exposures. Ideally, omics would be measured for all data types that 
algorithms would use. Such datasets are critical for testing signature detection and linking to 
exposures. 

• Diverse omics data across time (pre-malignant to cancer and beyond) is necessary to understand 
how exposures affect cancer initiation and progression. 

• Development of a “Human Cell Exposure Atlas” of multi-omic single cell data to assess cellular 
response to exposure in complex tissues. 

• Standardized data in repositories. 
 
Session 4: Challenges in Tracking Signatures of Exposures, Rebecca Fry, Ph.D. 
Key gaps and opportunities 

• New model types may be needed to identify molecular signatures of exposure, which should 
consider which cell types and animal models best recapitulate human population effects and 
whether they are generalizable. 

• Determining which critical measurements (epigenetics, adducts, metabolomics, mutations, 
circular RNAs) should be included in molecular signatures analyses. This should consider the 
stability of biomarkers, life stage, dose and timing, and how these relate to individual 
susceptibility factors (genetics, DNA repair). 
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• Methods for measuring exposure of the complex environment (chemical mixtures, non-chemical 
mixtures, and the exposome). 

• Vigilance in finding analytical tools for mixtures, pathway analysis, databases, and other tools 
that can be used to query exposure-biomarker-outcome relationships. 

Needs for the next five years 
• Continue to enhance the use of various model systems to investigate molecular signatures that 

indicate dose, timing of exposure, and initiation process. These include the appropriate use of 
mouse embryo fibroblasts, human-induced pluripotent stem cells (iPSCs), human-derived 
organoids (3D), and mouse models with specific mutations. 

• Continue to study biomarkers, their specificity (chemical, dose, timing, tissue), and their 
interactions and related physiologic measurements (cancer phenotypes, cancer progression. 
These biomarkers include circular RNAs, metabolomics, DNA methylation, DNA adducts, DNA 
mutation, metal isotopes, and protein adducts. 

• Continue to develop methods to address chemical mixtures and the exposome. These include 
the laboratory methods that systematically test chemicals of interest and advanced statistical 
methods for mixtures analysis. 

Application to cancer prevention 
• Understanding the mechanism of chemical-induced carcinogenesis is the first step toward 

prevention. This builds from data model systems with controlled chemical exposures, to 
comparisons of human physiologic endpoints (COSMIC signature). 

• Approaches that focus on biological pathways may help identify cancer-prevention methods 
related to the environment. Aflatoxin-broccoli sprout example serves as a model. 

• Methods currently used for non-cancer treatment, such as metal chelation, could be considered. 
 

Session 5: Population-Based Cancer Studies, Paul Brennan, Ph.D. 

Key gaps and challenges 
• It is unclear how low-level exposures relate to cancer risk. 
• There is a need to consider exposure mixtures, timing of exposure, susceptibility windows, and 

total exposome. 
• Suitable biomarkers for many environmental exposures are lacking, those with short half-life 

(BPA) require multiple samples, and accounting for developmental windows is challenging. 
• There is an absence of cross talk between population scientists and experimental scientists. 
• Most population-based studies involve populations of European ethnicity; race can be an 

important modifier of risk. 
• Addressing ubiquitous exposures. 
• Some mutational signatures developed on case series lack accurate measures of exposure 

(mainly TCGA/ICGC). 
• Most population cohorts are involve participants recruited in middle aged, relatively limited 

exposure assessment, or one-off collection of samples. 
• Sharing of data and samples is extremely difficult. The field must reduce the administrative 

burden associated with data and biosample sharing and emphasize the financial and scientific 
cost associated with putting up barriers. 
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Key opportunities 
• Technology development for more accurate exposure assessment on many fronts, such as 

duplex sequencing (for normal tissue), metabolomics, proteomics, and metallomics. This effort 
will require appropriate biological samples and standardization of methods and labs. The cost for 
large-scale exposure assessment is another important issue. 

• Enhanced measures of intermediate outcomes like clonal hematopoiesis or normal tissue clonal 
development. 

• Sampling blood and urine for inflammation biomarkers and methylation for multi-omics of the 
exposome. 

• New forms of cohorts, such as mother-child cohorts, to look at early-life exposures, and more 
diverse cohorts representing different populations. 

• Investigating alternative forms of tissue, including oral cells, urine, benign breast tissue, colonic 
polyps, and nasal swabs. 

• A greater focus on microbiome studies. 
• Mendelian randomization studies that can build on large GWA studies and large population 

cohorts with genetic data. 
Needs for the next five years 

• Develop new cohorts and studies that cut across the life range. 
• Consider multiple collections of biological samples. This approach is expensive, but important for 

early detection studies. 
• Identify molecular signatures that reflect early-life exposures, which may include child cohorts. 
• Connect epigenetic studies to mechanisms using experimental models like organoids to validate 

signatures from human populations. 
• Develop mutational signature studies based on large case series across multiple cancers with 

accurate exposure measurements, or within specific high risk populations. 
• Large scale mutational signature studies based on normal cells from easily accessible sources of 

tissue like oral cells. 
• Enhance international collaborations by bringing together large-scale population-based studies 

and researchers from diverse settings. 
 
Future Directions 
Detecting low-level exposures. At the population level, there are challenges in investigating low-level 
exposures that are difficult to quantify. Identifying what is needed to get resolution to detect these 
exposures is important to consider when designing future studies and cohorts. A good foundation may 
be to start with dissecting mechanisms of individual exposures. To understand exposures, a large cohort 
study followed over a long period of time, possibly a lifetime, would be useful. To understand the 
mechanisms, more studies using organoids would be useful. Multi-omics and other data types would 
inform understanding of tumors after development, as well development of therapeutic interventions. 
Developing in-depth benchmarks will be important for assessing exposure detection, how well an 
algorithm works, and what it misses. 

Tackling one problem at a time. Future research could address the categories of risk assessment, hazard 
identification, risk prediction, and early detection one issue at a time. Research could also focus on the 
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biggest emerging problem first (e.g., early-onset colorectal cancer or lung cancer in never-smokers), then 
use that work as a successful example for other cancer types. Specific tissues or biomarkers also merit 
focus. The field could look at previous success stories in cancer, like aflatoxin and liver cancer, to use as a 
model.  

Microenvironment. Research should investigate whether an exposure works by affecting the 
microenvironment of a tissue.  A major research gap exists in understanding how exposures affect 
tissues at a single-cell level.  

Access to normal data. Studies where “normal” means morphologically normal tissue adjacent to a 
tumor can be problematic because of field effects where the tumor may influence the surrounding 
tissue. Access to normal tissue from disease-free individuals has been lacking across many studies. 
Identifying an accurate representation of “normal” is necessary as a basis for comparison. Obtaining 
blood, normal adjacent tissue, and tumor tissue could give perspective, for example, on clonal expansion 
for episodic exposures. 

Data sharing. Data are often deposited in ways that are not useful. Data are also processed in different 
ways, encumbering efforts to combine them. The community should consider standards for processing 
data for sharing. It is also critical to share metadata. 
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dimensional data to toxicology, with the goal of increasing efficiency and bridging the knowledge of 
toxicology to novel means of quantifying biological change. Since joining the DTT he has led efforts to 
apply machine learning to carcinogenicity and toxicity prediction, the DNTP’s rapid response to the Elk 
River chemical spill, and the in vivo genomic dose response analysis and reporting group. Further, he has 
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the NIH and Institute levels. His research interests include the role of the microbiome in carcinogenesis, 
tumor immunity and therapy efficacy, infection derived cancers, cellular defense mechanisms, dietary 
phytochemicals and metabolites in chemoprevention, inflammation and cell stress response pathways, 
and cancer health disparities.  

John Essigmann, Ph.D. 
Massachusetts Institute of Technology 
John Essigmann, Ph.D., is the William and Betsy Leitch Professor of chemistry, biological engineering, and 
toxicology at MIT. His laboratory studies the responses of cells to DNA-damaging agents, with a specific 
emphasis on mechanisms of mutagenesis and genotoxicity. One major line of work involves the synthesis 
of oligonucleotides containing known carcinogen- or drug-DNA adducts, insertion of the modified 
oligonucleotide into the genomes of viruses, and replication of the modified viral genome in living cells; 
this work defines the type, amount and genetic requirements for mutagenesis and toxicity. In other 
work, his laboratory uses high-resolution mutational spectrometry to determine the mutational spectra 
of DNA damaging agents, such as aflatoxin B1 and N-nitrosodimethylamine.  

Michael Fischbach, Ph.D. 
Stanford University 
Michael Fischbach, Ph.D., is an associate professor in the Departments of Bioengineering and 
Microbiology & Immunology at Stanford University, an institute scholar of Stanford Chemistry, 
Engineering, and Medicine for Human Health (ChEM-H), and the director of the Stanford Microbiome 
Therapies Initiative. Fischbach is a recipient of the National Institutes of Health (NIH) Director's Pioneer 
and New Innovator Awards, a Howard Hughes Medical Institute (HHMI) HHMI-Simons Faculty Scholars 
Award, a Fellowship for Science and Engineering from the David and Lucille Packard Foundation, a 
Medical Research Award from the W.M. Keck Foundation, a Burroughs Wellcome Fund Investigators in 
the Pathogenesis of Infectious Disease award, and a Glenn Award for Research in Biological Mechanisms 
of Aging. His laboratory uses a combination of genomics and chemistry to identify and characterize small 
molecules from microbes, with an emphasis on the human microbiome. Fischbach received his doctoral 
degree as a John and Fannie Hertz Foundation Fellow in chemistry from Harvard University in 2007, 
where he studied the role of iron acquisition in bacterial pathogenesis and the biosynthesis of 
antibiotics. After two years as an independent fellow at Massachusets General Hospital, Fischbach 
joined the faculty at the University of California San Francisco, where he founded his lab, before moving 
to Stanford in 2017. Fischbach is a co-founder and director of Federation Bio and Kelonia, a co-founder 
of Revolution Medicines, a member of the scientific advisory boards of NGM Biopharmaceuticals and 
Chan Zuckerberg Science, and an innovation partner at The Column Group. 

Yvonne Fondufe-Mittendorf, Ph.D. 
The Van Andel Institute  
Yvonne Fondufe-Mittendorf, Ph.D., is a professor of epigenetics at The Van Andel Institute. Fondufe-
Mittendorf obtained her doctoral degree from the University of Goettingen, Germany, and did a 
postdoctoral fellowship at Northwestern University in the lab of the late Jonathan Widom. She then 
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went on to her first faculty job at the University of Kentucky, where she became a professor in the 
Department of Molecular and Cellular Biochemistry. Fondufe-Mittendorf moved to The Van Andel 
Institute in January of 2022 as a professor in the Department of Epigenetics. Her lab studies how the 
epigenome is reprogrammed in response to an environmental toxicant to drive diseases such as cancer.  

Rebecca Fry, Ph.D. 
University of North Carolina at Chapel Hill, Gillings School of Global Public Health 
Rebecca Fry, Ph.D. is the Carol Remmer Angle Distinguished Professor in Children’s Environmental Health 
and associate chair in the Department of Environmental Sciences and Engineering at the Gillings School 
of Global Public Health at the University of North Carolina at Chapel Hill (UNC-Chapel Hill). Fry is the 
founding director of the newly launched Institute for Environmental Health Solutions (IEHS) at UNC-
Chapel Hill. Fry received her doctoral degree in biology from Tulane University with postdoctoral training 
in toxicogenomics and environmental health sciences at MIT. A primary goal of Fry’s research is to 
increase awareness of the deleterious impacts of toxic exposures during the prenatal period with a focus 
on the epigenome and developmental origins of health and disease.  

Dan Gallahan, Ph.D. 
National Cancer Institute 
Dan Gallahan, Ph.D., is the NCI director for the Division of Cancer Biology. Gallahan started as NCI an 
intramural researcher focusing on the utilization of model systems to help understand the role of genetic 
alterations in breast cancer and the role of human papillomaviruses in cancer. He also spent time in 
private industry exploring the commercial and applied side of research, helping to establish a molecular 
diagnostic test. In the NCI extramural community, he has been responsible for the establishment of 
many important programs and scientific innovations having direct impact on new knowledge and cancer 
advances, such as the Stamp Out Breast Cancer Act, Trans-NCI Innovative Molecular Analysis 
Technologies (IMAT) program, and the Integrative Cancer Biology Program (ICBP). In his relentless pursuit 
of innovation and desire for a beter understanding of cancer, he has advanced quickly to become the 
deputy director of the Division of Cancer Biology and subsequently the director of the division in 2019. 

Mark Gerstein, Ph.D. 
Yale University, Yale Computational Biology & Bioinformatics Program 
After graduating from Harvard with a bachelors in physics in 1989, Mark Gerstein, Ph.D., earned a 
doctorate in theoretical chemistry and biophysics from Cambridge in 1993. He did postdoctoral research 
at Stanford, then came to Yale in 1997 as an assistant professor. In 2003, he became co-director of the 
Yale Computational Biology & Bioinformatics program. Gerstein has published over 600 publications, 
including several in prominent journals, such as Science and Nature. His research is focused on 
biomedical data science and he is particularly interested in machine learning, macromolecular 
simulation, human-genome annotation, disease genomics, and biomedical privacy.  

Ben Gewurz, M.D., Ph.D. 
Harvard Medical School, Brigham & Women’s Hospital 
Ben Gewurz, M.D., Ph.D. is an associate professor at the Brigham & Women’s Hospital and Harvard 
Medical School. He is the associate chair of the Harvard Graduate Program in Virology and a founding 
member of the Broad Institute Center for Integrative Solutions in Infectious Diseases. His laboratory 
studies Epstein-Barr virus (EBV) driven B-cell lymphomagenesis and gastric carcinogenesis, including EBV-
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driven metabolism remodeling, epigenetic control of viral oncogene expression, the EBV lytic switch, 
oncogene pathways, and host/virus interactions. Gewurz is the president of the International EBV 
Association, a PLoS Pathogens associate editor, and a member of the Virology, Journal of Virology and 
Tumor Virus Research editorial boards.  

Jesse Goodrich, Ph.D. 
University of Southern California 
Jesse Goodrich, Ph.D., is an assistant professor in the Department of Population and Public Health 
Sciences at the University of Southern California. His research combines data on mixtures of 
environmental exposures with information from omics datasets, to beter characterize the effects of 
environmental pollutants on cancer risks. In particular, his recent work has focused on how per- and 
poly-fluoroalkyl substances (PFAS), a persistent and ubiquitous group of chemicals detected in blood of 
over 99% of people in the U.S., increase the risk of liver cancer via alterations in key metabolic pathways 
linked to glucose and amino acid metabolism.  

Michelle Heacock, Ph.D. 
National Institute of Environmental Health Sciences, Hazardous Substances Research Branch 
Michelle Heacock, Ph.D., received her doctorate from Texas A&M University in College Station, Texas, 
for her work on the interplay between DNA repair proteins and telomeres. Her postdoctoral work was 
conducted at the NIEHS where she studied the DNA repair pathway, base excision repair. Her research 
focused on understanding the causes of cellular toxicity caused by DNA-damaging agents. Heacock is 
currently serving as the acting branch chief of the Hazardous Substances Research Branch and is a health 
science administrator overseeing Superfund Research Program (SRP) grants that span basic molecular 
mechanisms of biological responses from exposures to hazardous substances, movement of hazardous 
substances through environmental media, detection technologies, and remediation approaches. She has 
been with NIEHS since 2007. 

Cathrine Hoyo, Ph.D. 
North Carolina State University 
Cathrine Hoyo, Ph.D., is the Goodnight Distinguished Innovation Chair and professor in biological 
sciences and directs the Epidemiology and Environmental Epigenomics Laboratory at North Carolina 
State University (NC State). Her group’s research program aims to improve our understanding of how 
early development influences the risk of common chronic diseases, especially those that exhibit 
racial/ethnic differences in outcomes, including liver cancer and metabolic diseases. Her group has used 
a two-pronged approach to accomplish this. The first tactic is to identify environmentally responsive 
epigenetic elements that can be evaluated as a link between environmental stressors and common 
chronic diseases in children and adults. She also has assembled and is following multiple cohorts of 
newborns and otherwise healthy adults to identify environmentally responsive epigenetic targets that 
mediate environmental exposures and chronic-disease susceptibility in children and in adults.  

Ron Johnson, Ph.D. 
National Cancer Institute 
Ron Johnson, Ph.D., is a program director in the DNA and Chromosome Aberrations Branch in the 
Division of Cancer Biology, NCI. Johnson oversees a portfolio of cancer biology research awards related 
to chemical and physical carcinogens, DNA damage, and gene expression with a focus on lung, bladder, 

https://www.niehs.nih.gov/research/supported/centers/srp/index.cfm
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and liver cancers. Johnson received a doctorate in biochemistry from the Johns Hopkins School of 
Medicine and completed postdoctoral studies in developmental biology at the Stanford School of 
Medicine. 

Maria Teresa Landi, M.D., Ph.D. 
National Institutes of Health, National Cancer Institute 
Maria Teresa Landi, M.D., Ph.D., has training in clinical oncology and molecular epidemiology. She is a 
senior advisor for the Genomic Epidemiology, Trans-Divisional Research Program, and a senior 
investigator for the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH. She 
focuses her research on the genetic and environmental determinants of lung cancer and melanoma, and 
on the genomic characterization of these tumors. She is the principal investigator of both EAGLE and 
Sherlock-Lung, two landmark studies of lung cancer in smokers and never-smokers, respectively, which 
identified subtypes with distinct genomic features, mutational signatures, and evolutionary trajectories. 
She is also the leader of the MelaNostrum consortium, with the largest family study of melanoma 
worldwide.  

Somdat Mahabir, Ph.D., M.P.H. 
National Cancer Institute 
Somdat Mahabir, Ph.D., is a program director in the Environmental Epidemiology Branch of the 
Epidemiology and Genomics Research Program (EGRP) in the NCI Division of Cancer Control and 
Population Sciences (DCCPS). His responsibilities include managing research that focuses on cancer 
epidemiology of modifiable risk factors such as environmental exposures and lifestyle factors, and the 
development of scientific research initiatives. Mahabir leads the Cohorts for Environmental Exposures 
and Cancer Risk (CEECR) program and was involved with the development of the NIH Environmental 
Influences on Child Health Outcomes (ECHO) program. Mahabir served as co-chair for research on the 
2019-2023 Trans-NIH Strategic Plan for Women’s Health Research, and currently serves as co-chair of the 
NIEHS-NCI Cancer and the Environment Working Group. Prior to joining EGRP in 2009, Mahabir was an 
assistant professor in the Department of Epidemiology at The University of Texas MD Anderson Cancer 
Center. Mahabir is the recipient of an NCI Cancer Prevention Research Training Merit Award, NCI 
Director's Award, CDC/Agency for Toxic Substances and Disease Registry (ATSDR) Honor Award, NIH 
Director’s Award and academic awards from New York Medical College and New York Institute of 
Technology. 

Loïc Le Marchand, M.D., Ph.D. 
University of Hawai’i Cancer Center 
Loïc Le Marchand, M.D., Ph.D., is a professor of cancer epidemiology in the Population Sciences in the 
Pacific Program and currently serves as associate director for population sciences and community 
outreach and engagement at the University of Hawai’i Cancer Center. His research focuses on the role of 
biological and environmental factors in the etiology of colorectal, lung, and breast cancers, especially 
regarding ethnic/racial differences in cancer risk. 

Karin Michels, Sc.D., Ph.D. 
University of California, Los Angeles, Fielding School of Public Health 
Karin Michels, Sc.D., Ph.D., is professor of epidemiology at the University of California, Los Angeles 
(UCLA) Fielding School of Public Health in Los Angeles. From 2016-2021, she served as chair of the 
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department at UCLA after a 25-year stint at Harvard. Michels received her doctoral training in 
epidemiology at Harvard School of Public Health and earned an additional doctorate in biostatistics from 
Cambridge University in the United Kingdom. Her research focuses on the developmental origin of 
cancer, particularly breast cancer. She served as the principal investigator of one of the U01 grants in The 
Breast Cancer and the Environment Research Program (BCERP) consortium that explored the role of 
various environmental chemicals on pubertal maturation and development of the mammary gland. 
Michels also studies the influence of nutrition on health and heads several ongoing intervention studies 
of diet and the microbiome. She is also the cofounder of the area of epigenetic epidemiology and 
published the leading textbook in this field.  

Ana Navas-Acien, M.D., Ph.D. 
Columbia University, Mailman School of Public Health 
Ana Navas-Acien, M.D., Ph.D., is a professor of environmental health sciences at Columbia University’s 
Mailman School of Public Health. Her research investigates the health effects of environmental 
exposures (metals, tobacco smoke, e-cigaretes, air pollution), molecular pathways and gene-
environment interactions, and effective interventions for reducing involuntary exposures and their 
health effects, with the goal of improving people’s health and advance environmental justice. She 
obtained her medical degree from the University of Granada, Spain, and completed her residency 
training in preventive medicine and public health at the Hospital La Paz, Madrid, and her doctoral degree 
in epidemiology at Johns Hopkins University, Baltimore. She is recognized for bridging medical and 
environmental health sciences using a participatory approach. She directs the Columbia University 
Northern Plains SRP, a center that integrates science, technology, and traditional knowledge to protect 
the Northern Plains water resources and Indigenous communities from hazardous metal exposures. 

Serena Nik-Zainal, Ph.D. 
University of Cambridge 
Serena Nik-Zainal, Ph.D., is a Professor of Genomic Medicine and Bioinformatics and an NIHR Research 
Professor at the University of Cambridge. She studied medicine at the University of Cambridge in 2000 
and completed a doctorate degree at the Wellcome Sanger Institute (WSI) in 2009 exploring breast 
cancer using whole genome sequencing (WGS). She demonstrated how detailed downstream analyses of 
all mutations present in WGS breast cancers could reveal mutation signatures, which are imprints left by 
mutagenic processes that have occurred through cancer development. She identified a novel 
phenomenon of localized hypermutation termed “kataegis”. Nik-Zainal was awarded a Wellcome Trust 
Intermediate Clinical Fellowship in 2013. She joined the Sanger Institute faculty team in 2014 and 
continued to develop expertise in the analysis and interpretation of WGS tumors. Apart from using 
computational approaches, she also studies mutational signatures experimentally using cell-based 
model systems. Nik-Zainal ran a clinical project, Insignia, recruiting patients with DNA repair/replication 
defects, aging syndromes and neurodegeneration, and people who have been exposed to 
environmental/occupational mutagens to gain biological insights into mutational phenomena in these 
patients. Nik-Zainal moved to the Department of Medical Genetics in 2017 to accelerate the translation 
of her genomics expertise towards clinical applications and further her work into the physiological 
mechanisms underpinning mutagenesis. 
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Arun Pandiri, Ph.D. 
National Institute of Environmental Health Sciences, Molecular Pathology Group 
Arun Pandiri, Ph.D., leads the Molecular Pathology Group at NIH. He is a diplomate of the American 
College of Veterinary Pathologists and the American Board of Toxicology. He was previously an NIEHS 
Intramural Research Training Award (IRTA) fellow, then a contract pathologist from Experimental 
Pathology Laboratories, Inc. He earned his veterinary degree from Acharya N. G. Ranga Agricultural 
University (ANGRAU), Hyderabad, India; master's degree from the University of Arkansas, Fayeteville; 
doctoral degree from Michigan State University and the United States Department of Agriculture (USDA) 
ARS Avian Disease and Oncology Laboratory, East Lansing; and pathology residency training at NC State, 
Raleigh. His group is currently working on multiple -omics projects related to chemical carcinogenesis 
using rodent and human tumor samples as well as several projects to understand the environmental 
contributions of early onset colorectal cancers. 

David Phillips, Ph.D. 
King’s College London 
David H. Phillips, Ph.D., D.Sc., FRCPath, is a Professor of Environmental Carcinogenesis at King’s College 
London. His research interests are in the mechanisms of metabolic activation of environmental 
carcinogens, the detections and identification of DNA adducts, and the biological consequences of such 
DNA damage — what cells do to carcinogens and what carcinogens do to cells. In recent years, his 
atention has focused on generating whole genome mutational signatures in in vitro systems with the 
aim of determining the environmental origins of mutations found in human tumors. 

Teresa Przytycka, Ph.D. 
National Library of Medicine, National Center for Biotechnology Information 
Teresa Przytycka, Ph.D., is a senior investigator at the National Center for Biotechnology Information in 
the National Library of Medicine (NLM) and NIH. The research in her group focuses on computational 
methods advancing the understanding of biomolecular systems, including gene regulation, biological 
networks, and the emergence of complex phenotypes, including cancer. In 2021, she was elected an 
International Society for Computational Biology (ISCB) fellow.  

John Quackenbush, Ph.D. 
Harvard University 
John Quackenbush, Ph.D., is professor of computational biology and bioinformatics and chair of the 
Department of Biostatistics at the Harvard T.H. Chan School of Public Health, professor in the Channing 
Division of Network Medicine, and professor at the Dana-Farber Cancer Institute. Quackenbush 
completed his doctorate degree in theoretical physics, but in 1992 he received a fellowship to work on 
the Human Genome Project. This led him through the Salk Institute, Stanford, The Institute for Genomic 
Research (TIGR), and to Harvard in 2005. Quackenbush uses massive data to probe how many small 
effects combine to influence human health and disease. He has more than 300 scientific papers and over 
73,000 citations. Among his honors is recognition in 2013 as a White House Open Science Champion of 
Change. 
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Daniel Shaughnessy, Ph.D. 
National Institute of Environmental Health Sciences, Exposure, Response, and Technology Branch 
Daniel Shaughnessy, Ph.D., joined the Division of Extramural Research and Training in 2006. As a 
postdoctoral fellow in the Laboratory of Molecular Carcinogenesis at NIEHS, he conducted research on 
the risks and protective effects of dietary factors on DNA damage in humans. Shaughnessy manages a 
portfolio of grants related to DNA repair and mutagenesis. He also manages grants on the development 
and validation of biomarkers of response to environmental stress, with a current focus on early 
biomarkers of mitochondrial dysfunction and altered signaling in response to environmental stress. He is 
the program contact for the small business programs (SBIR/STTR) at NIEHS. He received a doctoral 
degree from UNC-Chapel Hill in 2002 and a master’s degree from UNC-Chapel Hill in 2000, studying the 
molecular mechanisms of dietary antimutagens. 

Mona Singh, Ph.D. 
Princeton University 
Mona Singh, Ph.D., is a professor of computer science in the Lewis Sigler Institute for Integrative 
Genomics. She has been on the faculty at Princeton University since 1999. She received her bachelor’s 
and master’s degrees from Harvard University, and her doctorate from MIT, all in computer science. She 
works broadly in computational molecular biology and its interface with machine learning and 
algorithms. Much of her work is on developing algorithms to decode genomes at the protein level and 
she is especially interested in developing data-driven methods for predicting and characterizing protein 
sequences, functions, interactions, and networks, both in healthy and disease contexts. Among her 
awards are the Presidential Early Career Award for Scientists and Engineers (PECASE) in 2001, and the 
Rheinstein Junior Faculty Award from Princeton’s School of Engineering and Applied Science in 2003. She 
was named a fellow of the Association for Computing Machinery (ACM) in 2019 and of the Informational 
Society for Clinical Biostatistics (ISCB) in 2018. 

Cheryl Walker, Ph.D. 
Baylor College of Medicine 
Cheryl Walker, Ph.D., is the director of the Center for Precision Environmental Health and a professor in 
the Departments of Molecular & Cell Biology and Medicine at Baylor College of Medicine. She currently 
directs the NIEHS Center for Translational Environmental Health Research and serves on the board of 
scientific advisors for the National Cancer Institute. Walker’s studies on the role of the epigenome in 
gene-environment interactions have yielded significant insights into mechanisms by which early-life 
exposures influence health and disease across the life course. Her work has also led to the discovery of 
new tumor suppressor functions in the cell. Walker earned her bachelor’s degree in 1977 from the 
University of Colorado-Boulder in molecular, cellular, and developmental biology, and a doctorate in 
1984 in cell biology from The University of Texas Southwestern Medical School, with additional post-
doctoral training as a staff fellow at National Institute of Environmental Health Sciences. She has been 
recognized with the 2016 Leading Edge in Basic Research Award from the Society of Toxicology, is a 
fellow of the Academy of Toxicological Sciences and the American Association for the Advancement of 
Sciences (AAAS), and in 2016 was elected to National Academy of Medicine. 

  



 

43 
 

Ting Wang, Ph.D. 
Washington University School of Medicine in St. Louis 
Ting Wang, Ph.D., is the inaugural Sanford C. and Karen P. Loewentheil Distinguished Professor of 
Medicine at Washington University School of Medicine. His group is known for defining the widespread 
contribution of transposable elements (TEs) to the evolution of gene regulatory networks as well as to 
the 3D genome architecture, and for revealing that epigenetic dysregulation of TEs is a major 
mechanism driving oncogenesis. His lab is home to the WashU Epigenome Browser, utilized by 
investigators around the world to access hundreds of thousands of genomic datasets generated by large 
Consortia including the NIH Roadmap Epigenome Project, Encyclopedia of DNA Elements (ENCODE), 4D 
Nucleome, TaRGET, Impact of Genomic Variation on Function (IGVF), and the Human Pangenome 
Project. Wang currently directs the NIEHS Environmental Epigenomics Data Center, the Human 
Pangenome Reference Consortium, the IGVF Data Administrative and Coordination Center, the SMaHT 
Network Organization Center and Genome Characterization Center. 

Wei Zheng, M.D., Ph.D., M.P.H. 
Vanderbilt University School of Medicine, Division of Epidemiology 
Wei Zheng, M.D., Ph.D., is professor and director of the Division of Epidemiology at Vanderbilt University 
School of Medicine. He also serves as the associate director for Population Science Research at the 
Vanderbilt-Ingram Cancer Center. Zheng has published more than 1,200 research papers and served as 
the principal investigator for more than 35 NIH-funded large epidemiologic and genetic studies, 
including three large prospective cohort studies including over 200,000 study participants. His research 
focuses on nutrition and the molecular and genetic epidemiology of cancer. 
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Appendix 2: Workshop Agenda 
All times are Eastern Daylight Time (EDT) 
 

 

 

 

Day 1: Thursday, June 29, 2023 
11:00 a.m. Welcome and Introductory Remarks 

• Daniel Shaughnessy, Ph.D., National Institute of Environmental Health Sciences 
(NIEHS)   

• Trevor Archer, Ph.D., Deputy Director, Distinguished Investigator, NIEHS 
• Ron Johnson, Ph.D., National Cancer Institute (NCI) 
• Dan Gallahan, Ph.D., Director, Division of Cancer Biology, NCI 

11:15 a.m. Workshop Structure and Goals 
• Cheryl Walker, Ph.D., Baylor College of Medicine 
• Hannah Carter, Ph.D., University of California, San Diego  
• Daniel Shaughnessy, Ph.D., NIEHS 
• Ron Johnson, Ph.D., NCI 

11:30 a.m. Session 1: Mutational Signatures of Exposure in Cancer 
SESSION HOST: Arun Pandiri, Ph.D., NIEHS 
MODERATOR: Ludmil Alexandrov, Ph.D., University of California, San Diego 
State of the Science: Emerging Opportunities and Caveats of Using Mutational 
Signatures of Environmental Exposures 

• Serena Nik-Zainal, Ph.D., University of Cambridge 
Synopsis Talks 

• Paul Brennan, Ph.D., International Agency for Research on Cancer 
• Maria Teresa Landi, M.D., Ph.D., NCI 
• Allan Balmain, Ph.D., FRS, University of California, San Francisco 

Panel Discussion 

12:40 p.m. Break 
 
1:20 p.m. Session 2: Other Data Types as Signatures of Exposure in Cancer  
 SESSION HOST: Phil Daschner, M.Sc., NCI 
 MODERATOR: Scot Auerbach, Ph.D., NIEHS 
 State of the Science: Other Data Types as Signatures of Exposure in Cancer 

• Ting Wang, Ph.D., Washington University 
 Synopsis Talks 

• Cathrine Hoyo, Ph.D., North Carolina State University  
• Ben Gewurz, M.D., Ph.D., Harvard University 
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• Michael Fischbach, Ph.D., Stanford University 
 Panel Discussion 

 

 

 

 

2:30 p.m. Break 
 
2:40 p.m. Session 3: Computational Challenges and Integrating Multi-Omics to Identify 

Signatures  
 SESSION HOST: Daniel Shaughnessy, Ph.D., NIEHS 
 MODERATOR: Mona Singh, Ph.D., Princeton University 
 State of the Science: Why Networks Mater: Embracing Biological Complexity 

• John Quackenbush, Ph.D., Harvard University 
 Synopsis Talks 

• Teresa Przytycka, Ph.D., National Library of Medicine 
• Joshua Campbell, Ph.D., Boston University 
• Mark Gerstein, Ph.D., Yale University 

 Panel Discussion 

3:50 p.m. Close of Day 1 
 

Day 2: Friday June 30, 2023 
11:00 a.m. Welcome 

• Michelle Heacock, Ph.D., NIEHS 

11:05 a.m. Session 4: Challenges in Tracking Signatures of Exposures  
 SESSION HOST: Michelle Heacock, Ph.D., NIEHS 
 MODERATOR: Rebecca Fry, Ph.D., University of North Carolina, Chapel Hill 

State of the Science: Inducing Mutational Signatures by Environmental Carcinogens 
and Chemotherapeutic Agents In Vitro: Progress, Prospects, and Limitations 

• David Phillips, Ph.D., King’s College, London 
 Synopsis Talks 

• John Essigmann, Ph.D., Massachusets Institute of Technology 
• Yvonne Fondufe-Mittendorf, Ph.D., Van Andel Institute 
• Ana Navas-Acien, M.D., Ph.D., Columbia University 

 Panel Discussion 

12:15 p.m. Break 
 
12:30 p.m. Session 5: Population-Based Cancer Studies 
 SESSION HOST: Somdat Mahabir, Ph.D., MPH, NCI 
 MODERATOR: Paul Brennan, Ph.D., International Agency for Research on Cancer 
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 State of the Science: Use of Molecular Signatures of Exposures in Epidemiologic 
Studies of Cancer 

• Wei Zheng, M.D., Ph.D., Vanderbilt University 
 Synopsis Talks 

• Jesse Goodrich, Ph.D., University of Southern California 
• Karin Michels, Sc.D., Ph.D., University of California, Los Angeles 
• Loïc Le Marchand, M.D., Ph.D., University of Hawai’i 

 Panel Discussion  
 

 

 

 

  

1:40 p.m. Break 

2:20 p.m. Workshop Summary and Future Directions 
 SESSION HOST: Ron Johnson, Ph.D., NCI 
 MODERATORS: Cheryl Walker, Ph.D., Baylor College of Medicine and Hannah Carter, 

Ph.D., University of California, San Diego 
 Session Summaries 

• Ludmil Alexandrov, Ph.D., University of California, San Diego 
• Scot Auerbach, Ph.D., NIEHS 
• Mona Singh, Ph.D., Princeton University 
• Rebecca Fry, Ph.D., University of North Carolina, Chapel Hill 
• Stephen Chanock, M.D., NCI 

 Future Directions  
 Panel discussion among all invited participants moderated by co-chairs 

3:30 p.m. Closing Remarks 
• Hannah Carter, Ph.D., University of California, San Diego  
• Cheryl Walker, Ph.D., Baylor College of Medicine 
• Ron Johnson, Ph.D., NCI  
• Daniel Shaughnessy, Ph.D., NIEHS 
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Appendix 3: Key Publications 
Session 1: Mutational Signatures of Exposure in Cancer 

Alexandrov, L.B., et al., Deciphering signatures of mutational processes operative in human cancer. Cell 
Rep, 2013. 3(1): p. 246-259. 
 
Alexandrov, L.B., et al., Signatures of mutational processes in human cancer. Nature, 2013. 500(7463): p. 
415-421. 
 
Alexandrov, L.B., et al., The repertoire of mutational signatures in human cancer. Nature, 2020. 
578(7793): p. 94-101. 
 
Kim, Y.A., et al., Mutational Signatures as Sensors of Environmental Exposures: Analysis of Smoking-
Induced Lung Tissue Remodeling. Biomolecules, 2022. 12(10): p. 1384.   
 
Kim, Y.A., et al., Mutational Signatures: From Methods to Mechanisms. Annu Rev Biomed Data Sci, 2021. 
4: p. 189-206.  
 
Wojtowicz, D., et al., Hidden Markov models lead to higher resolution maps of mutation signature 
activity in cancer. Genome Med, 2019. 11(1): p. 49.   
 
Huang, X., D. Wojtowicz, and T.M. Przytycka, Detecting presence of mutational signatures in cancer with 
confidence. Bioinformatics, 2018. 34(2): p. 330-337.  
 
Session 2: Other Data Types as Signatures of Exposure in Cancer 

Johnson, K.J., et al., A Transformative Vision for an Omics-Based Regulatory Chemical Testing Paradigm. 
Toxicol Sci, 2022. 190(2): p. 127-132.  
 
Corton, J.C., et al., A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic 
Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicol Sci, 2022. 188(1): 
p. 4-16.  
 
Gwinn, W.M., et al., Evaluation of 5-day in vivo rat liver and kidney with high-throughput transcriptomics 
for estimating benchmark doses of apical outcomes. Toxicol Sci, 2020. 176(2): p. 343—354. 
 
Ramaiahgari, S.C., et al., The power of resolution: contextualized understanding of biological responses 
to liver injury chemicals using high-throughput transcriptomics and benchmark concentration modeling. 
Toxicol Sci, 2019. 169(2): p. 553—566. 
 
Dekkers, K.F., et al., An online atlas of human plasma metabolite signatures of gut microbiome 
composition. Nat Commun, 2022. 13(1): p. 5370. 
 
Bokulich, N.A., et al., Multi-omics data integration reveals metabolome as the top predictor of the 
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