NIH Council 2024

Bethesda, MD June 4th. 2024

Adverse Pulmonary Effects of Highly Toxic Chemicals - A Comparative Analysis of Chemical Inhalation Burns

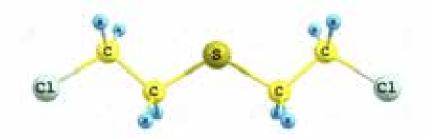
Professor

Department of Pediatrics, Pulmonary Medicine
University of Colorado Anschutz School of Medicine

Director

Center for Advanced Drug Development

OBJECTIVES

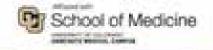

- Review Sulfur Mustard Inhalation Injury airway burn, alveolar fibrosis
- Review Methyl-Isocyanate Inhalation Injury airway burn, alveolar fibrosis
- Review Chlorine Gas Inhalation Injury airway burn, mild alveolar flooding

Historical context of the use of Sulfur Mustard

- Sulfur Mustard (SM) was first developed in 1822 by Cesar-Mansuete Despretz, by reacting Sulfur Dioxide with Ethylene
- In 1850-1860's, SM's harmful blistering properties were simultaneously reported by French (Riche), British (Guthrie), and German (Niemann) scientists
- SM was the first vesicant agent used as a chemical weapon
- Other chemical reactions were developed to produce a more potent SM

Some Examples of the Use of SM as a Chemical Weapon

- 1917 WWI, the German Army against the Allies (100,000 deaths)
- 1919 UK against the Red Army
- 1921-1927 Spain and France against Moroccan rebels
- 1930 Italy against Libya
- 1934 Soviet Union against China
- 1935 1940 Italy against Ethiopia
- 1937 1945 Japan against China
- 1963 1967 Egypt against North Yemen
- 1983 1988 Iraq against Iran (>1000 deaths)
- 1995 -1997 Sudan against insurgents in Civil War
 - Not Much Use in WWII



Modern use and potential threats of Sulfur Mustard

- After WWII, most of Germany's SM was dumped into the Baltic Sea
- In 1966-2002, >700 SM weapons were found near Bornholm island; location of others are unknown.
- All dumped SM weapons are still potent and lethal
- Causes <u>accidental exposures</u>, ex: 2010 (NY fishermen)
- Other SM was disposed of by undersea explosions, or in factories (or stored in Pueblo, Colorado)

Regulations of Warfare Agents

- 1972 Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological and Toxin Weapons and on Their Destruction (BTWC)
- 1997 Chemical Weapons Convention (CWC)

Chemical weapons watchdog concludes Islamic State used mustard gas in 2015 attack in Syria

JULIA HOBINSON | TH FEBRUARY 2024

Clinical case presentation – Patient (S. Mustard) - Exposure

- 21 yr old soldier in WWI
- Premature burst of mustard gas munition during firing (primary exposure)
- No immediate symptoms

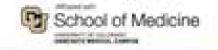
He slept in the proximity of the artillery gun, acutely wakening <u>after 4 hours</u> with

acute symptoms of:

- Nausea
- Burning in the eyes
- Vomiting
- Dizziness
- Headache
- Tickle in the throat


Patient (S. Mustard) – cont. – 1st day symptoms

- Within 24hrs, the symptoms worsened:
 - Conjunctivitis with photophobia
 - Erythematous oropharynx
 - Dyspnea
 - Chest rattling (rhonchi) and wheezing
 - Slimy foamy sputum
 - Fever of 40.1°C
 - Weakening

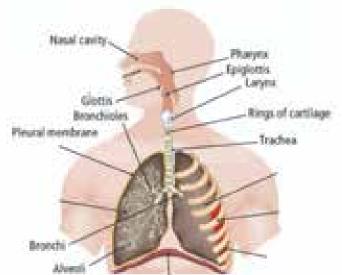


Patient (S.Mustard) – cont. – subsequent days

- On the 2nd day: temperature 39 to 40°, <u>cyanosis</u>, pulse 120, restlessness.
- On the 3rd day: <u>cyanosis</u>, somnolence; restlessness; 38.5°.
- On the 4th day: <u>death</u> after increasing dyspnea and tachycardia

Diagnosis:

- croupous inflammation of the pharynx, larynx, trachea and larger bronchi;
- purulent bronchitis and bronchiolitis
- hemorrhagic bronchopneumonia
- bullous emphysema of the anterior lung segments
- hemorrhages in the brain (*purpura cerebri*), in the trachea, beneath the pleura, epicardium and endocardium, salivary gland, and renal tubules, cornea



Patient (S. Mustard) – Autopsy Results

Patient Autopsy - Respiratory Organs

- Nasal cavity -- purulent mucus
- Pharynx --clogged with flaky purulent material
- Posterior pharyngeal wall -- fine, yellow, firmly adhering coatings
- Larynx --filled with purulent material; the inlet fold ulcerated
- **Epiglottis** edge raw, erythematous
- Soft palate -- nearly entirely closed with a spanned pseudo/membrane
- Trachea -- lined with firmly or loosely adhering pseudo/membranes; the mucosa beneath is dark red with bright red spots (hemorrhages);
- Mainstem Bronchi -- adhering pseudo/membrane is formed into a tubular outlet;
- Lobar bronchial branches -- contiguous outlets alternate with containing thick liquid pus;
- Bronchioles expanded; the mucosa overall is dark bluish-red.
- Anterior lung -- have large bubbles or blisters;
- Pleural membrane -- slightly opaque with isolated small hemorrhages.
- <u>Microscopic findings:</u> hemorrhagic purulent bronchitis, fibrinous leukocytic exudate, edema.

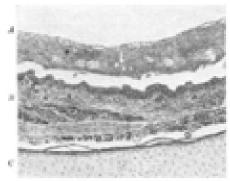


Fig. 1. Loosely adhering pseudomembrane in the trachea; A = pseudomembrane, B = mucosa, submucosa, C = cartilage

Heitzmann, Otto. 1920. On Battefield Gas Poisoning, Chapter VIII

Sulfur Mustard (SM) Inhalation-Exposed Humans - Airway Casts: The Willems report

<u>Willems report:</u> Report on the SM-exposed Iranians evacuated to European hospitals during 1984-87 war

CASTS: 23% of SM-exposed patients had airway casts (15/65)

Mortality

Of patients with casts, 50% died

Serious Morbidity

 Of patients with casts, 20% surviving patients had emergent tracheostomy due to sudden airway occlusion casts Clinical management of mustard gas casualties

Jan L. Willems, M.D. Ph.D.

Heyman Instabate of Phartanology University of Gheat Medical School It 9000 Gheat Belgram

966

Royal fathool of the Medical Services Leopolithkisterne B 8000 Glunt, Belgium

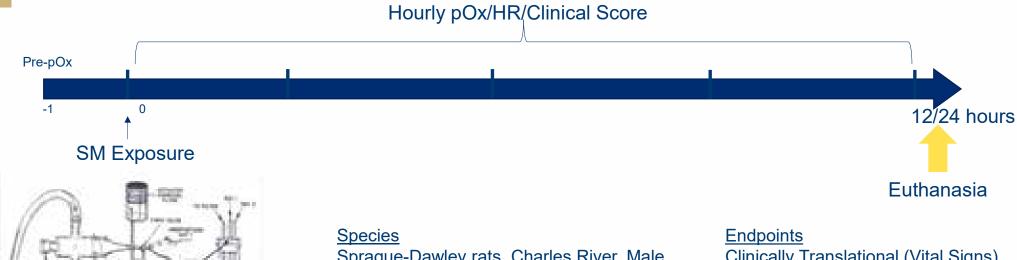
Acute Phase health effects of Sulfur Mustard inhalation exposure

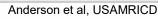
Severity depends on SM dose, individual characteristic, temperature, humidity

Main feature is a completely asymptomatic incubation period (hours - months)

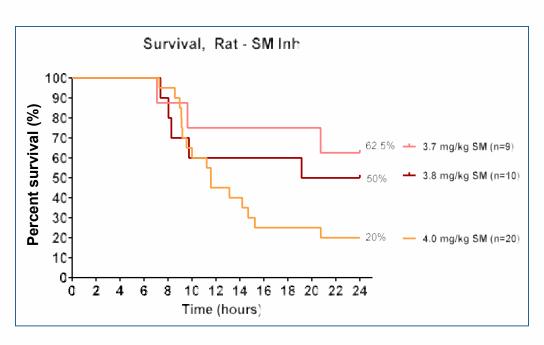
Acute Health Effects

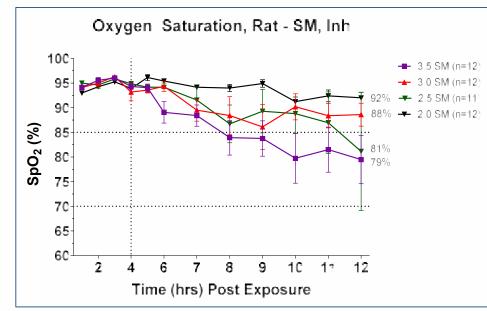
- Acute airways edema
- Inflammation
- Destruction of Airway Epithelial Cells
- 'Pseudomembrane formation which may block airways and cause death'
- Multiple Organ Dysfunction Syndrome (MODS) bone marrow, gastrointestinal and central nervous system injury



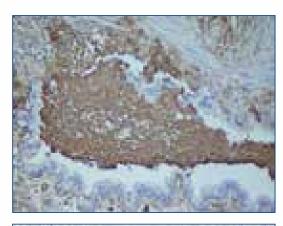

Acute SM Inhalation Rat Model Development

Sprague-Dawley rats, Charles River, Male Weight – 250-275 g on exposure day


Clinically Translational (Vital Signs) Blood Analysis (CBC, CMP, ABG) **BALF** analysis Lung histology/IHC, cast scoring Coagulation assays Cardiac Function (cath/echo) **Lung Function** SM metabolite analysis

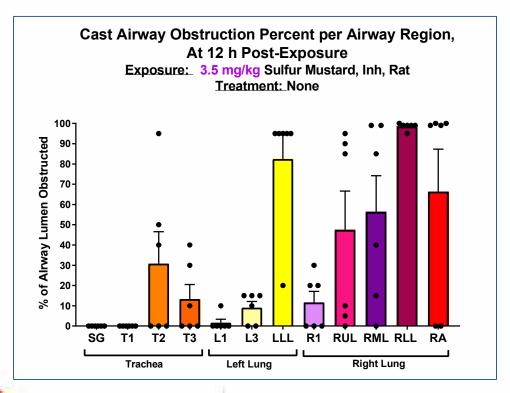


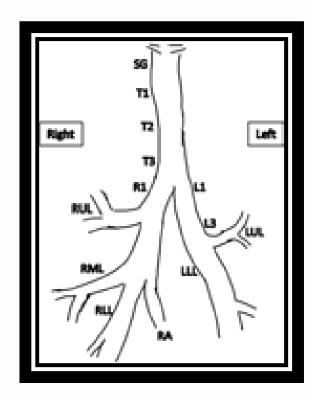
Acute SM Inhalation exposure causes dose-dependent survival and oxygen desaturation


Acute SM Inhalation morbidity and mortality is due to airway thrombosis (fibrin rich casts) in rat model

Fibrin-rich casts (aka pseudomembranes) form in the airways after SM Inhalation

Fibrinogen IHC


IgG Control IHC



Airway Casts in Right Lower Lobes Predominantly

SG - subglottis

T1 – proximal trachea

T2 - mid-trachea

T3 - distal trachea

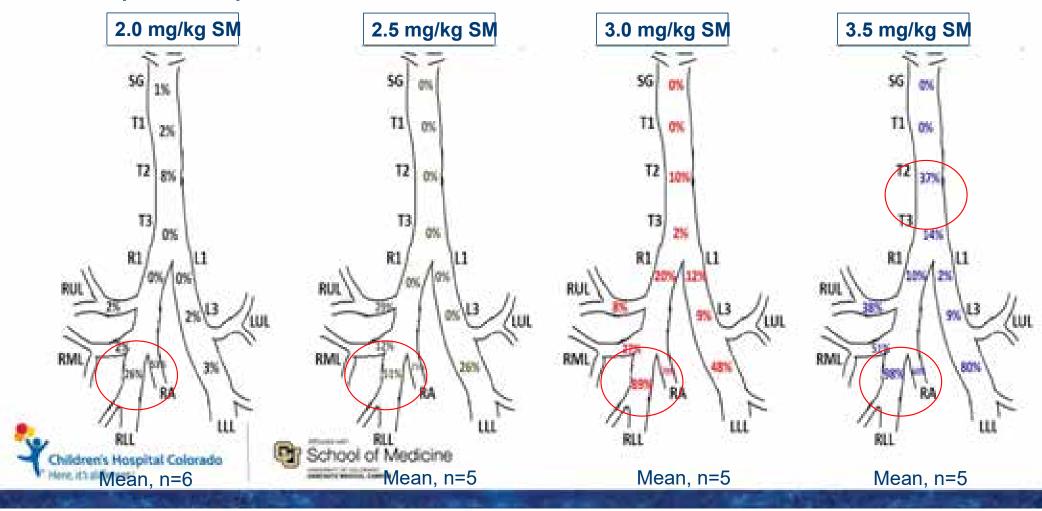
R1 - right mainstem at carina

L1 - left mainstem at carina

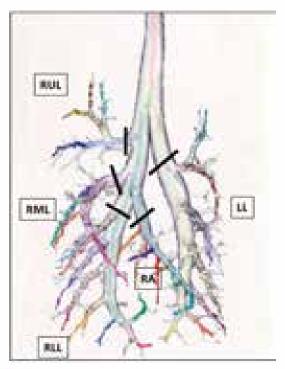
L3 – distal left mainstem

LLL – left lower lobe (most proximal)

RUL – right upper lobe RML - right middle lobe

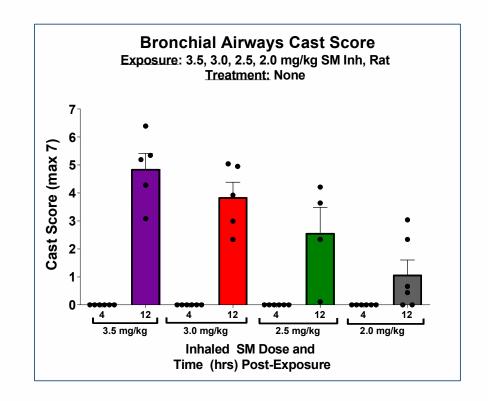

RLL - right lower lobe

RA - right accessory



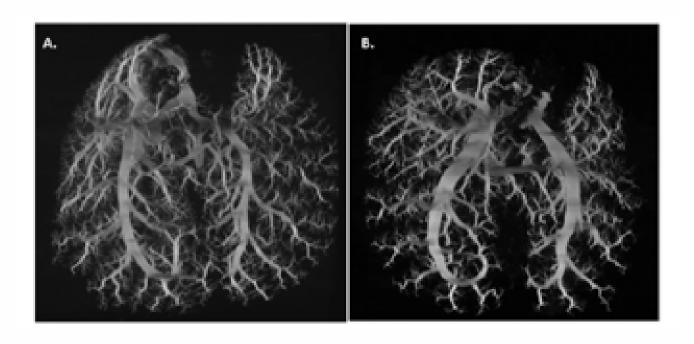


Cast Obstruction (%) per Airway Region at 12 hours Post-Exposure to SM (Inhaled) in Rats

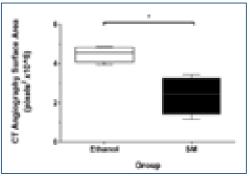


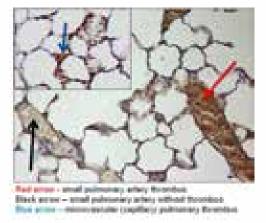
Airway Bronchial Cast Formation is Dose-Dependent - Composite Bronchial Cast Score

Scoring System:	
0	0 - 4%
1	5 -14%
2	15 - 29%
3.	30 - 49%
4	50 - 64%
5	65 - 79%
6	80 - 99%
7	100%



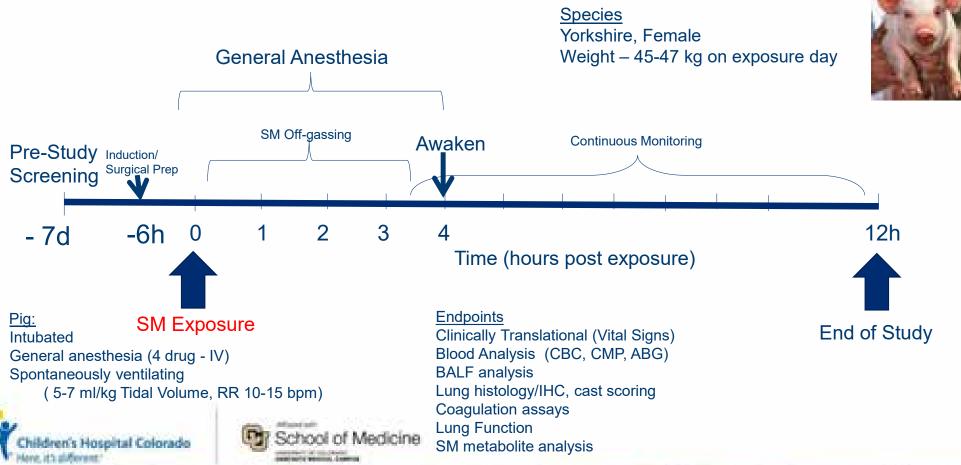
Cast Scoring system via dissection of fixed lungs

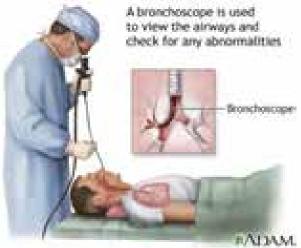




Acute high dose SM Inhalation causes vascular pruning (rats) due to acute vascular pathology (thrombosis)

CT quantitation



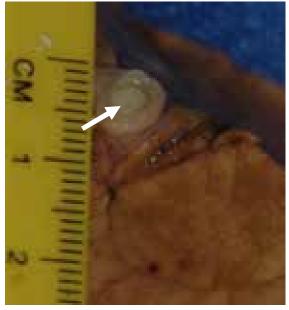

Acute SM Inhalation Pig Model Development

Bronchoscopy (Human and Pig)

Bronchoscopy in Pigs After SM Inhalation

Left Mainstem Right Mainstem R upper lobe

Normal Pig Trachea



Pig Trachea 10.5h Post-SM Inhalation

Pig Model of SM Inhalation Causes Airway Thrombosis (Fibrin Casts)

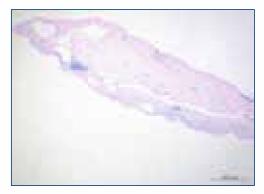
Cast pulled out via hemostat

Children's Hospital Colorado

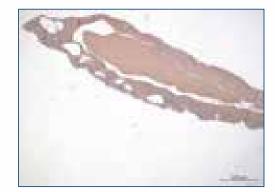
Cast completely obstructing opening to Right Upper Lobe (RUL)

Entire cast pulled out of RUL

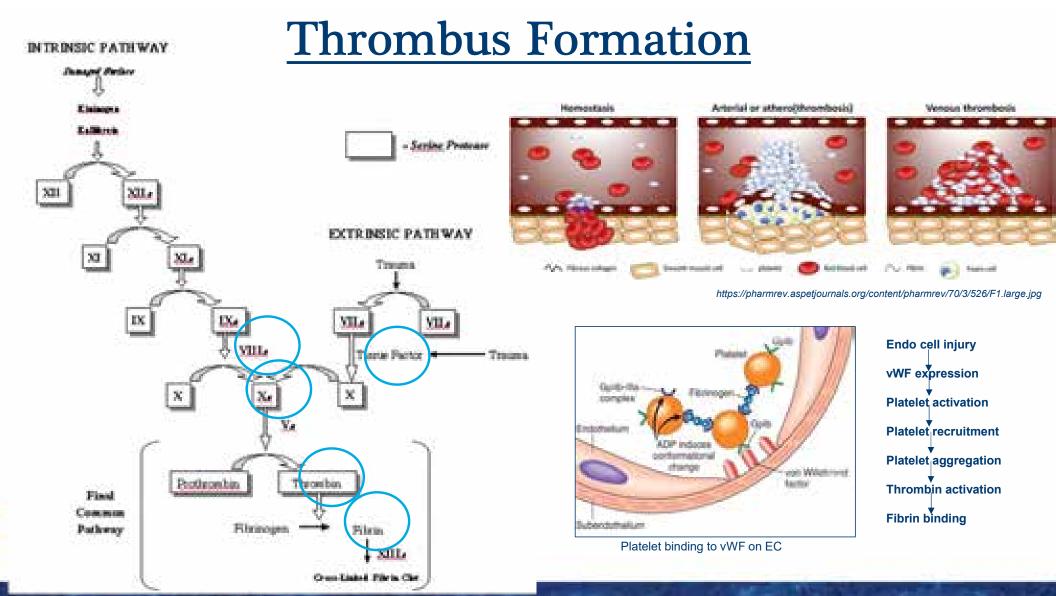
Airway Casts Are Present in Pig Lobes After SM

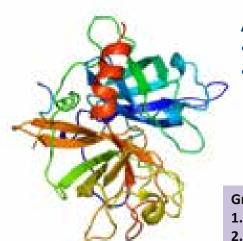

Inhalation

Right Middle Lobe Cast In-situ(arrow)



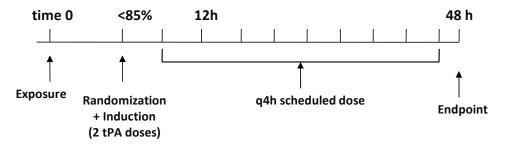
Right Lower Lobe Cast Ex-vivo (arrow)


Tracheal Cast Histology: Mucus (4X AB/PAS Stain for Mucus)



Tracheal Cast Histology: Fibrin (10X Fibrinogen IHC)

Cast Lysis with Alteplase (tissue plasminogen activator, tPA)

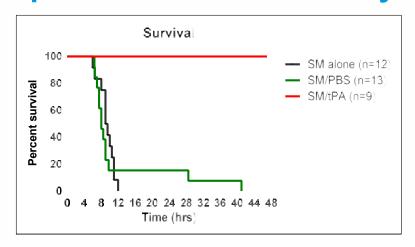


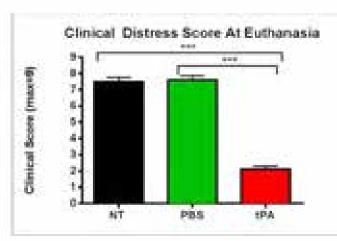
Alteplase

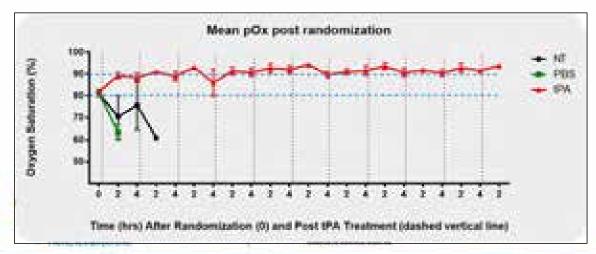
- Fibrinolytic drug, converts (inactive) plasminogen to (active) plasmin
- FDA approved for use in Myocardial infarction, Strokes, Pulmonary embolism, Clearance of clots in central venous devices and chest tubes

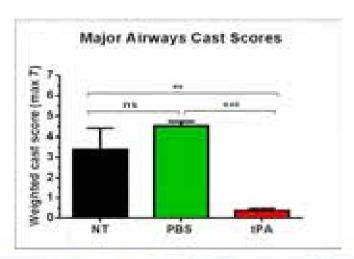
Groups:

- 1. HD alone (NT)
- 2. HD + tPA q4
- 3. HD + PBS q4

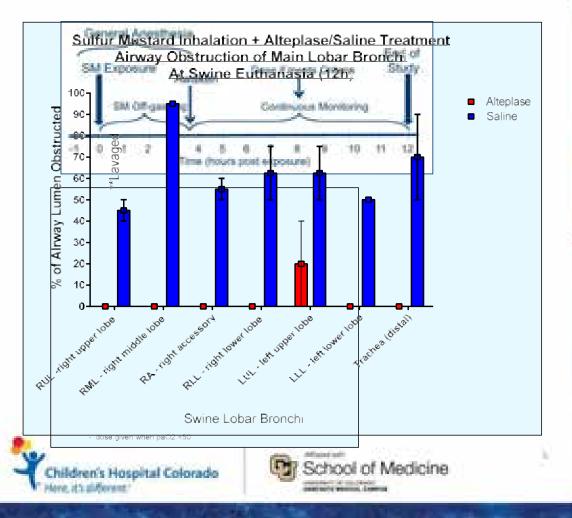

tPA dosing: 0.7mg/kg (induction is 2 doses 1h apart), then q4h maintenance dose (1 dose) -administered under isoflurane anesthesia via Penn-Century microsprayer Euthanasia criteria (must meet both):

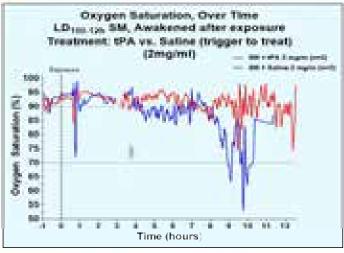

- 1. pOx <70%
- 2. Clinical score > or = 7 (new scoring system)



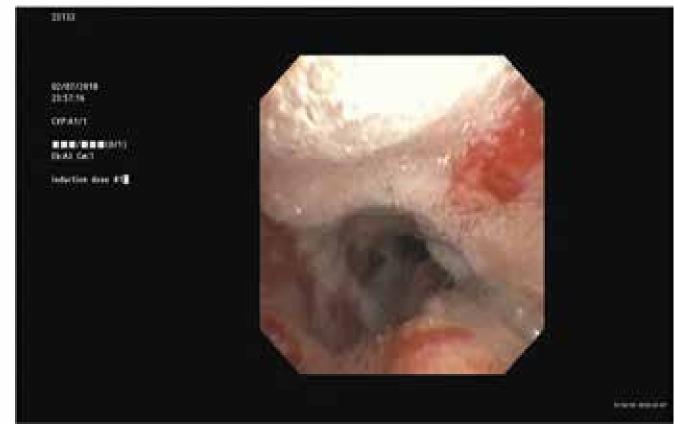


Alteplase treats acute airway injury after SM inhalation in Rats

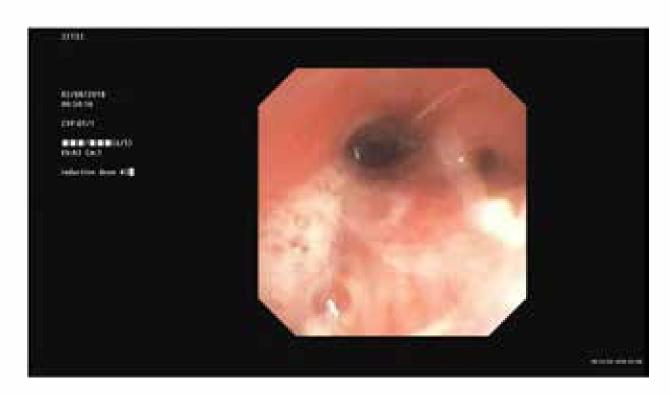




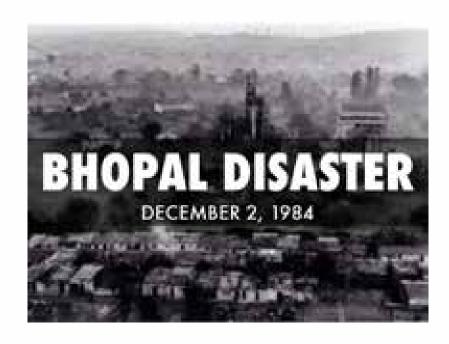
Alteplase treats acute airway injury after SM inhalation in Swine



Bronchoscopy Video – SM inh, 10.5hr



Bronchoscopy Video – SM inh, 11 hr 30 min after Alteplase



Methyl Isocyanate - Introduction

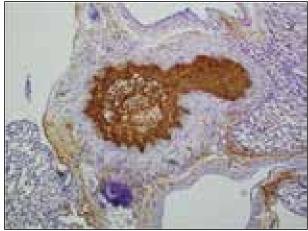
- Bhopal Agent = Methyl Isocyanate (MIC)
- Accident of 1984 Bhobal, India --30-40 tons of MIC leaked from Union Carbide pesticide plant.
 - 1. ~4000 people died overnight, another 10,000 over next days/weeks
 - 2. Necropsy findings of obstructed airways, inflammation, hemorrhage, acute bronchiolitis --- fibrinous exudate in the entire respiratory tract

The Many Uses of Methyl-Isocyanate in Industrial Manufacturing

- 1. Carbamate pesticides and herbicides
- 2. Polyurethane/plastics
- 3. Paints/adhesives
- 4. Rubber
- 5. Used in production of, and often stored in proximity to, other toxic chemicals, some of which also can be required MIC for synthesis. Many of these are flammable and/or explosive.
- 6. Many other isocyanates and diisocyanates are used in industry, but MIC is the most toxic/lethal

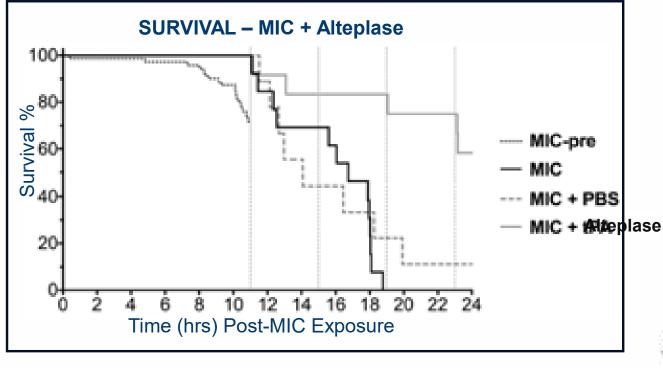

Patient (MIC)

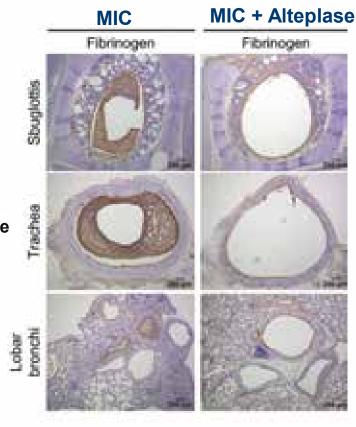
- 1. Female age 26, cloud of gas from nearby chemical plant
- 2. Immediate eye burning, and watering, rhinorrhea
- 3. Within 4 hours: Coughing—***strongly associated with mortality***
- 4. <u>Within 8-12 hours:</u> By Diarrhea, shortness of breath, vomiting, wheezing, respiratory distress, rales
- 5. <u>Second day</u>: Worsening Cyanosis, coughing up copious amounts of thick and frothy sputum, severe respiratory distress, ongoing eye watering, rhinorrhea
- 6. Death within 3 days: cyanosis, seizures, frothing at mouth → death
- 7. <u>AUTOPSY:</u> severe epithelial fibrinous necrosis, sloughing, pseudomembranes, pulmonary edema, airway edema, inflammation, ARDS
- 8. Cause of Death: Asphyxia due to respiratory failure


Methyl Isocyanate- Rat Model

Trachea

Fibrinogen IHC



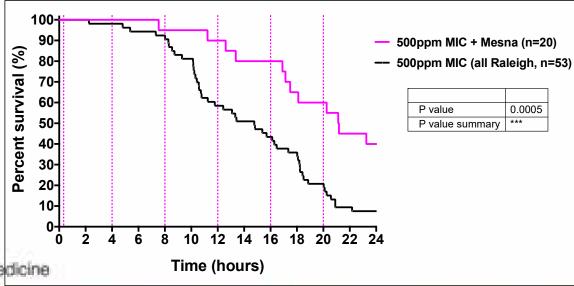

Accessory lobe main bronchus

Methyl Isocyanate Treatment with Alteplase - Rat

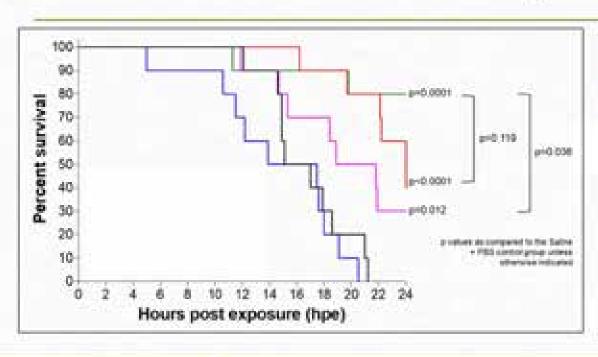
Hb

Nick et al, Ann NY Acad Sci, 2020

Methyl Isocyanate and MESNA Treatment


Mesna = sodium 2-mercaptoethane sulfonate

- Thiol
- Chemoprotective agent, used to detoxify metabolites of ifosfamida and cyclophosphamide during chemotherapy for cancer treatment
- Antioxidant, as thiol can scavange reactive oxygen species



illdren's Hospital Colorado

MESNA Synergizes with tPA to Further Improve Survival after MIC Inhalation (80% survival at 24 h)

- MIC (n=10)

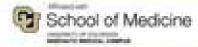
MIC + Saline + PBS (n=10)

MiC + Mesna (n=10).

MIC + tPA (n=10)

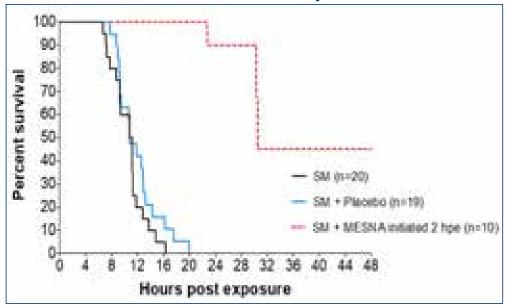
MIC + Mesna + tPA (n=10)

Methyl isocyanate (MiC): 500 ppm for 30 min, nose-only


MESNA:

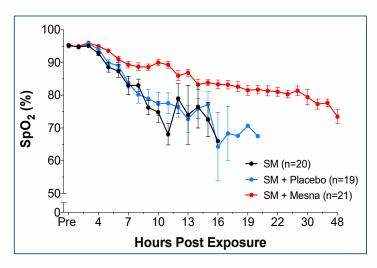
300 mg/kg, IP, at 0.33, 4 and 8 h

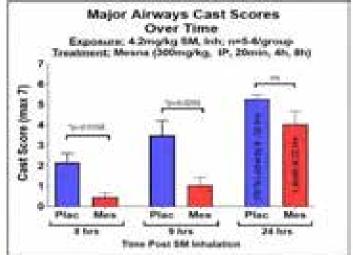
tPA:


0.7 mg/kg, IT, at 6, 11, 16 and 21 h

Sulfur Mustard and Mesna Treatment

First Mesna Treatment Delayed to 2 hours




Alternative Tx Protocol:

Mesna: 300mg/kg, IP, at 2, 4, and 8h post-exposure

Chronic Phase health effects of Sulfur Mustard inhalation exposure

Prevalence 78%

***Bronchiolitis Obliterans *** (53-55%)

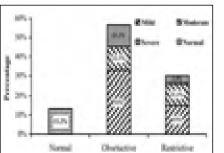
55% at 6wks to 1yr 53% at >4 yrs

Pulmonary fibrosis (5 – 24%)

24% at 6wk to 1 yr 5- 12% at >4 yrs

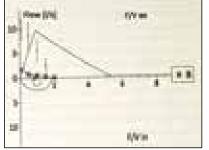
Chronic Bronchitis - (22 – 80%)

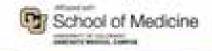
Recurrent Pneumonia, COPD

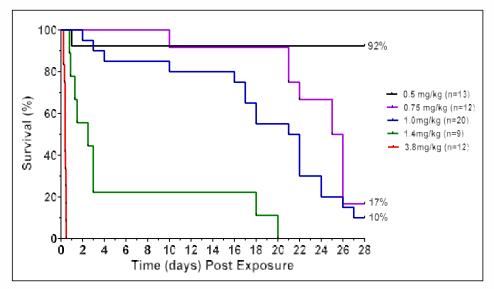

Tracheobronchomalacia - (14%) **RADS-** (11 - 30%)

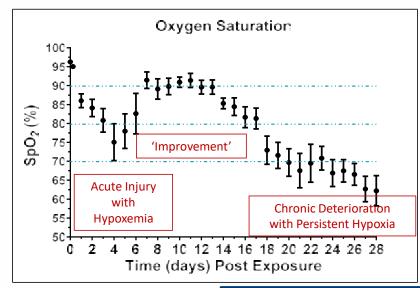
Emphysema

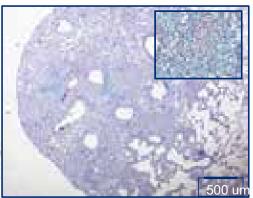
Large Airway Stenosis – (10%)


Bronchiectasis - (8.8%)



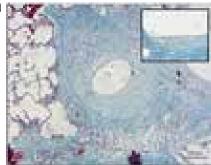


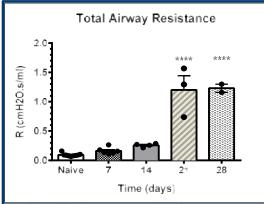




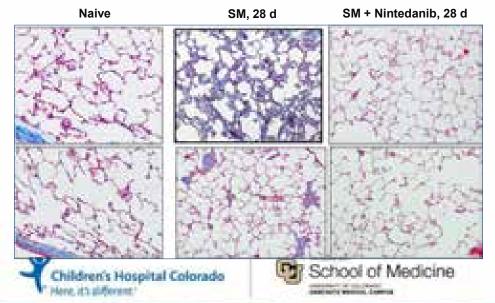
Ghanei 2016. Mustard Lung. Elsevier Ghabili et al 2010. J. of Appl Tox

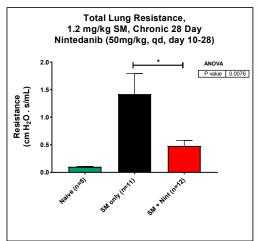
Late effects (Chronic Lung Disease) – Sulfur Mustard - rat

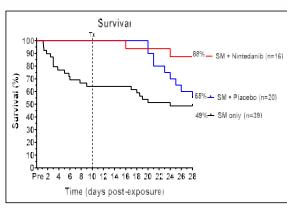


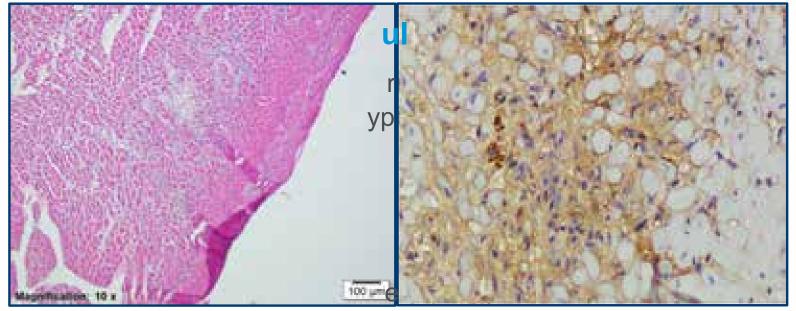


- Predominance for sub-pleura
- Greater in dependent lobes
- · Patchy, heterogeneous

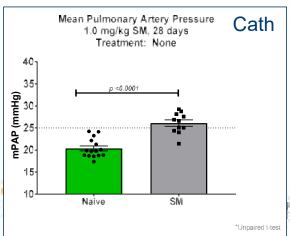


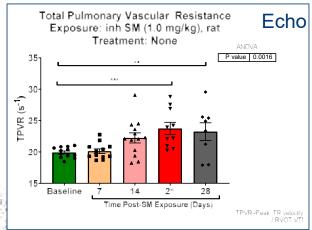


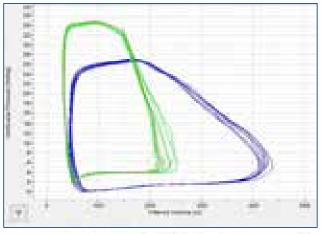



Nintedanib (antifibrotic) for Pulmonary Fibrosis due to SM

- Nintedanib is a "triple kinase inhibitor" and acts on tyrosine kinase receptors for:
 - PDGF (platelet derived growth factor)
 - VEGF (vascular endothelium growth factor)
 - FGF (fibroblast growth factor)
- Inhibits fibroblast migration, proliferation, and myofibroblast transformation.
- FDA approved for treatment of idiopathic pulmonary fibrosis

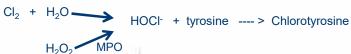






Shabestari, et al CV Tox, 2019

Khosravi et al J. Clin U/S,2018

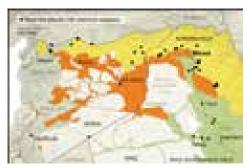


Chlorine Gas

- 1. Yellow-green color
- 2. Highly reactive oxidant
- 3. Slightly water soluble
- 4. Density 2x that of air (settles near ground)
- 5. Intermediate reactivity with water (both upper and lower airways injured)
 - 1. forming a strong acid, HCl, and a powerful oxidant, HOCl
- 6. Reacts directly with organic materials in tissues
 - 1. Forming oxidized and chlorinated derivatives (chlorotyrosine, other chlorinated amines)

Chlorine – situations for exposure

- 1. Industrial Uses plastics, PVC, solvents, water purification, pesticides
- 2. Chlorine As a Chemical Weapon
 - First used in Ypres, France, WWI
 - Syria more than 30 attacks since 2013 (most Chlorine)
 - Kafr Zita, Harasta, Damascus, Ghouta, Aleppo,
 - Last Use: Douma, April 7th, 2018


Global Attacks 1917 - Present

WWI Estimated Gas Casualties

Nation	Fatsi	(Fatal & Non-tatal)
Platetia	16,000	419.040
Germany	9.000	200,000
France	8,000	190,000
british Empire (Includes Canada)	8,109	108,706
Austria Hungary	3,000	100,000
United States	1,462	72,007
flody .	4.627	60,000
Total	90,198	1,200,653

Reported Attacks in the Middle East 2014 - 2017

Syrian Child After Suspected Gas

Acute effects of chlorine

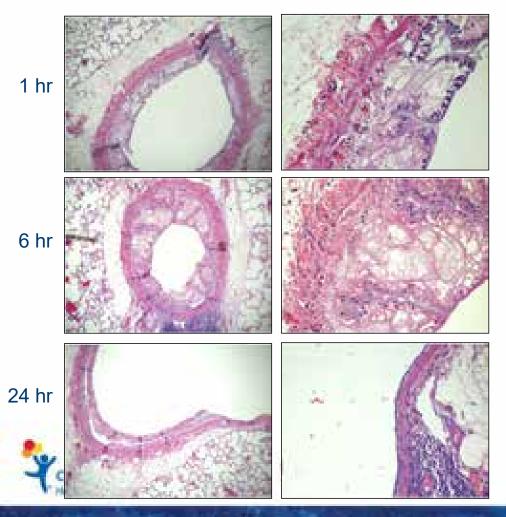
TIME COURSE:

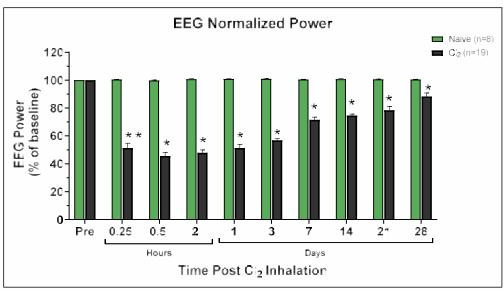
- Respiratory symptoms may be immediate or delayed for several hours or days after exposure to chlorine.
- Symptoms generally resolve within 6 hours after mild exposures, but may continue for several days after severe exposures.
- Deterioration may continue for several hours.

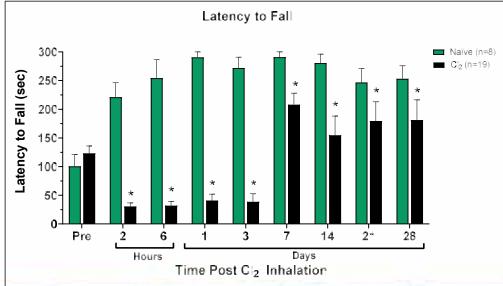
DEATH:

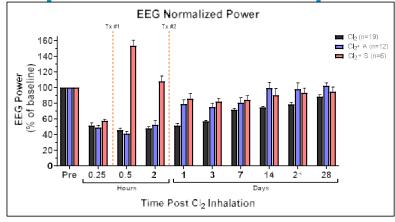
- 1. Deaths (1.5%) most within 4 hours of exposure
- Autopsy findings:
 - cardiomegaly (89%)
 - pulmonary congestion
 - pulmonary edema
 - frothy fluid in airways
 - tracheal and bronchial mucosal erythema,
 - purplish red and firm lung parenchyma
 - lactic acidosis (ICU patient)
 - cause of death: asphyxiation or acute respiratory failure

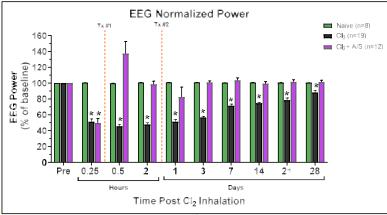
Chlorine exposure concentration	Effect on Inspect health
i-3 ppm	Mild irritation of macros membrane
> 5 ppm	Eye instance
> 15 pps	Throat irritation
15 30 ypis	Cough, choking, burning
≥ 50 pipm	Chemical previousitis
410 pps	Death after 10 releases exposure
> 1000 ppm	Druth within extuses

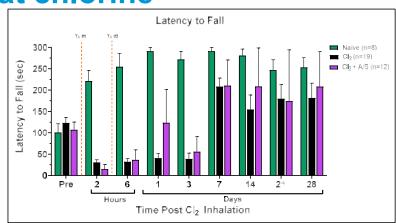

Chlorine Late effects - human


- Most individuals who suffer single chlorine gassings recover normal pulmonary function, even if the exposure is overwhelming.
- Ongoing low level exposures can cause obstructive airways disease, including asthma.
- Few sporadic cases of bronchiolitis obliterans have been reported
- Long-term neuropsychiatric, neurocognitive dysfunction is being reported at high rates



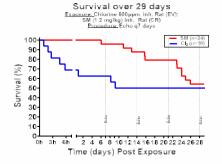

Chlorine Rat Model

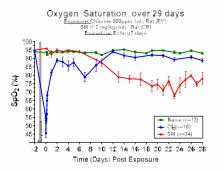


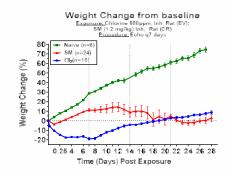


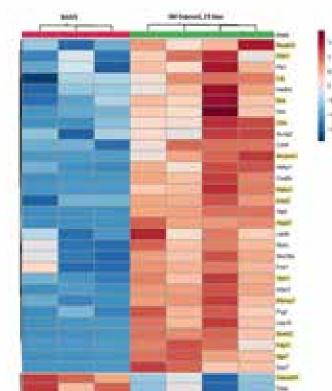


Scopolamine and Atropine in our rat chlorine

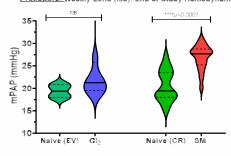


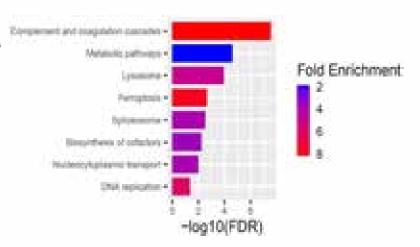





Scopolamine 10mg/kg at 15min, 2hr (IM) Atropine 1 mg/kg at 15min, 2hr (IM)

Current R01 Project at UC-CADD




A. Pulmonary Artery Mean Pressure at 29 days

Exposure: Chlorine 600ppm Inh. Rat (SD. Envigo);

SM (1.2 mg/kg) Inh. Rat. (SD. Charles River)

Procedure: Weekly Echo (Iso); End of Study Hemodynamics

Summary

- 1. Sulfur Mustard, acute airway casts Alteplase, Mesna
- 2. Sulfur Mustard, delayed fibrosis, PH, RV dysfxn Nintedanib, (Sildenafil)
- 3. Methyl Isocyanate, acute airway casts Alteplase, Mesna
- 4. Methyl Isocyanate, delayed ??fibrosis?? PH/RV? (?Nintedanib, ?Sildenafil)
- 5. Chlorine, acute croup; neurotoxicity N/A; Scopolamine, Atropine
- 6. Chlorine, delayed encephalopathy Scopolamine, Atropine

THANK YOU

Center for Advanced Drug Development - Team

Professor Emeritus

Carl W. White, MD Claudia Staab-Weijnitz, PhD Associate Professor

Jules Harral, MS Research Instructor, Director of Cardiopulmonary Physiology Core

Jacqueline Rioux, PMP Program Manager, BARDA Project Manager, **Business Manager**

Tyler McGrath, RN Critical Care Nurse, Scientific Manager

Rvan Brace, RT Respiratory Therapy, Scientific Manager

Natalie Durkovich, RN Critical Care Nurse. Scientific Manager

Tom Hu, PhD Associate Professor. **Business Developmen**

Timothy Joo, BS

Emily Overley, BS

Gabriele Cheatham

Leslie Bloomquist, BS

Mo Basiouny, BS

Shenali Uragoda, BS

Lindsey Friend, BS

Q&A

