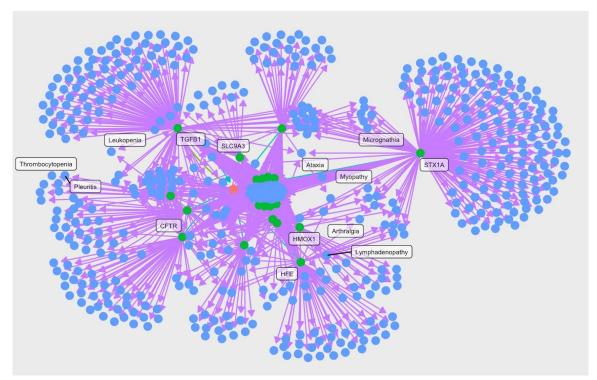
Best Practices: Ontology development and Curation

Leigh Carmody, PhD Office of Data Science NIEHS

Advisory

- Nico Matentzoglu (Semanticity)
- Chris Mungall (LBL)
- Melissa Haendel (UNC)
- Peter Robinson (JAX/BIH)



What do we want to do with (our) data?

- Extract meaningful insights
- Test hypotheses
- Identify patterns and trends

Gain a deeper understanding of a phenomenon by analyzing the data contained

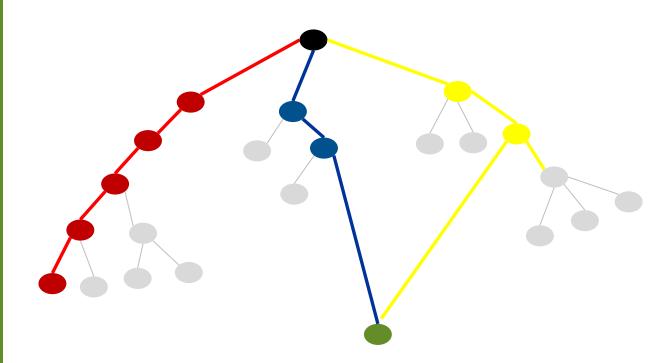
within them

FAIR Principles

- Findable
- Accessible
- Interoperable
- Reusable

<u>Data</u> and <u>vocabularies</u> should be accessible to both humans and data machines.

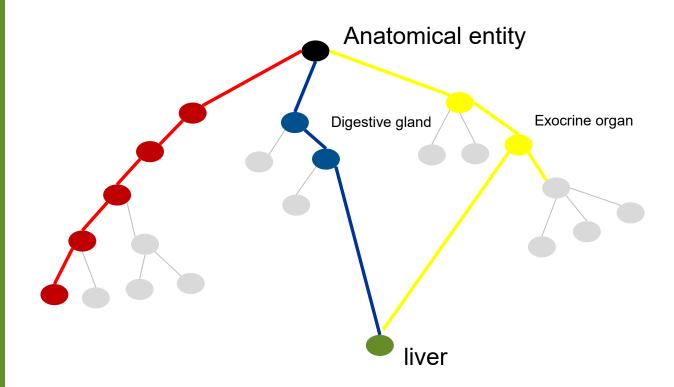
Definitions


• **Health and data standard terminologies**: is designed to provide a robust framework for representing and organizing knowledge within a specific domain, facilitating communication, and consistency across users and systems.

• Common data element (CDE): a standardized, precisely defined question that is paired with a set of specific allowable responses, that is then used systematically across different sites, studies, or clinical trials to ensure consistent data collection.

 Ontology: A systematic arrangement of important categories of concepts which exist in a field and showing the relations between them.

Ontologies


Definition: a set of concepts and categories in a subject area or domain that shows their properties and the relations between them.

Ontologies

Definition: a set of concepts and categories in a subject area or domain that shows their properties and the relations between them.

Uses: Data management
Ontologies can establish a common vocabulary and set of relationships to describe and understand data from different sources. This standardization allows systems to exchange data with a shared meaning, which is important for semantic interoperability.

Best practices for ontology development

- Term requirements
- True-Path Rule
- Avoid Bundled Terms
- Pie Rule
- 5pm Rule

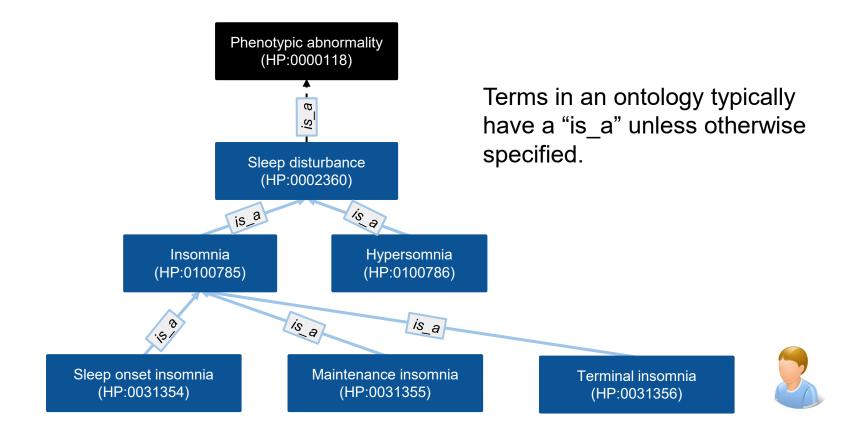
Term requirements: Anatomy of an ontology term

* **Label:** Deeply set eye * **ID:** HP:0000490

* **Definition:** An eye that is more deeply recessed into the plane of the face than is typical.

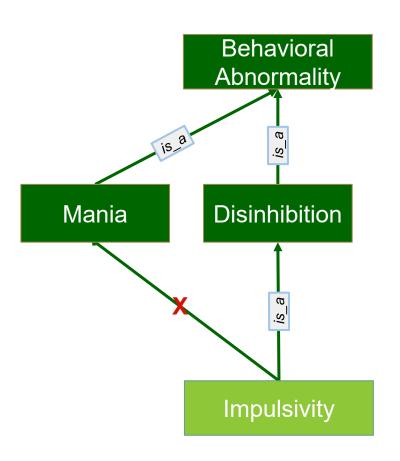
* Parent Term: Abnormality of globe location

Synonyms: Deep set eye, Deep-set eyes, Enophthalmos, Ocular depression, Sunken eye, Sunken eyes


Reference: PMID:19125427

Comment: This finding should be distinguished from a prominent supraorbital ridge or inferior orbital margin. In Deeply set eyes, the globe is recessed in comparison to the overall prominence of the face. There is no known objective measurement, and diagnosing this feature depends heavily on the experience of the observer.

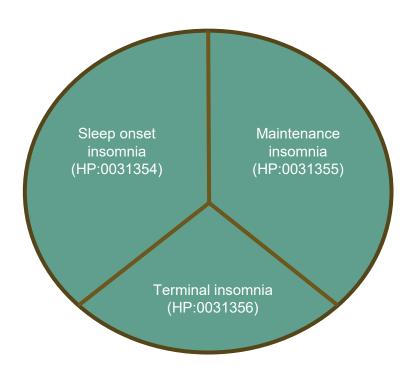
Logical definition:


'has part' some (retracted and ('characteristic of' some 'eyeball of camera-type eye') and ('has modifier' some abnormal))

True-Path rule

True-Path rule

If a term can be used to describe a patient then all parents of that term can be used to describe that patient.



- Do patients with impulsive behavior always have mania?
- Do patients with impulsive behavior always have a behavioral abnormality?

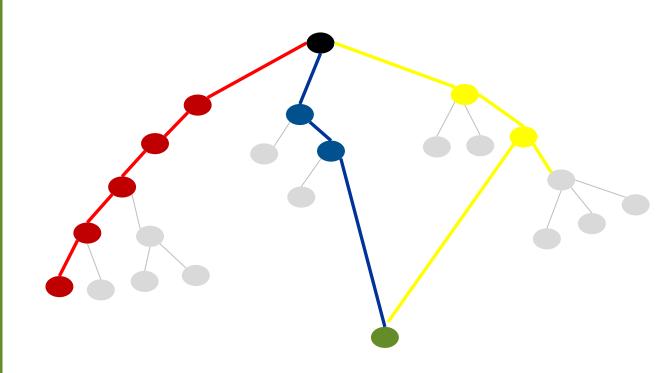
Pie Rule

The set of child terms of a given term should robustly cover the applications of the parent term, such that a parent term could always be replaced with a more specific child term.

Avoid bundled terms

Avoid creating terms that refer to multiple terms that do not easily fit under a broader term. The only time to bundle terms is when they always occur together.

Examples from human phenotype issue tracker:


'Trunk and extremity distribution to skin lesions'

'Stocky habilitus': Body type defined by short stature and overweight, muscular appearance.

For curation: HP:0004322 Short stature, HP:0025502 overweight, Broad shouldered?.

5 O'clock rule

(Findable). At the end of a long day, the term should be easy and intuitive to find. That means clear labeling and thoughtful hierarchy.

There is another way to make sure there is a logical hierarchy and that is to leverage other ontologies. * Label: Deeply set eye * ID: HP:0000490

Logical definition:

'has part' some

(retracted and ('characteristic of' some 'eyeball of camera-type eye') and ('has modifier' some abnormal))

National Institutes of Health U.S. Department of Health and Human Services

Curation best practices

- Finding ontologies
- Selecting terms
- Adding/editing terms

Finding an ontology: where?

Different resources have different ontologies

- Ontology lookup service (OLS): https://www.ebi.ac.uk/ols4
 - EX. uPheno

 Figure 1.178

 Figure 2.178

 Figure 2.178

 Figure 3.178

 Figure 3.178
- Bioportal: https://bioportal.bioontology.org/
 - Ex. Envo-mapping

http://purl.obolibrary.org/obo/ENVO_01000600	NMDCO	LOOM
http://www.wikidata.org/entity/Q21555202	HHEAR	LOOM
http://sweetontology.net/matrWater/Rainwater	SWEET	LOOM

- Ontobee: https://ontobee.org/
 - SPARQL query templates
- OBO foundry: https://obofoundry.org/
 - Tons of resources

OBO foundry: https://obofoundry.org/

- Lots of available resources
- Collection of largely science/biology-based ontologies
- Ontologies have been vetted*
 - Rating system*
- P1) Open
- P2) Common Format common formal language (BFO/COB compliant)
- P3) URI/Identifier Space ex. http://purl.obolibrary.org/obo/UPHENO_3000004
- P4) Versioning
- P5) Scope extent of the domain or subject matter it intends to cover. P6) Textual Definitions define terms
- P7) Relations Relations should be reused from the Relations Ontology (RO).
- P8) Documentation
- P9) Documented Plurality of Users **
- P10) Commitment To Collaboration
- P11) Locus of Authority There should be a person who is identifiably in charge
- P12) Naming Conventions The names in an ontology must be intelligible to scientists and amenable to natural language processing. <u>Primary labels should be unique among OBO Library ontologies.</u>
- P13) Notification of Changes
- P16) Maintenance
- P20) Responsiveness

OBO foundry: https://obofoundry.org/

- Lots of available resources
- Collection of largely science/biology-based ontologies
- Ontologies have been vetted*
 - Rating system*: https://oops.linkeddata.es/catalogue.jsp

ID ^	Title ^	Description	Quick Access	OBO Principles ^	Social
cl	Cell Ontology	The Cell Ontology is a structured controlled vocabulary for cell types in animals.		QC WARN 2	Stars 164
fbbt	Drosophila gross anatomy	An ontology representing the gross anatomy of Drosophila melanogaster.			Stars 19
fbdv	Drosophila development	A structured controlled vocabulary of the development of Drosophila melanogaster.		QC INFO 1 Cc BY	Stars 5
plana	planaria-ontology	PLANA, the planarian anatomy ontology, encompasses the anatomy and life cycle stages for bothSchmidtea mediterranea biotypes.		Ø QC WARN 1	Stars 5
ро	Plant Ontology	The Plant Ontology is a structured vocabulary and database resource that links plant anatomy, morphology and growth and development to plant		QC WARN 2 GG BY	Stars 60
uberon	Uberon multi-species anatomy ontology	An integrated cross-species anatomy ontology covering animals and bridging multiple species-specific ontologies			Stars 137
wbls	C. elegans development ontology	A structured controlled vocabulary of the development of Caenorhabditis elegans.			Stars 5
zfa	Zebrafish anatomy and development ontology	A structured controlled vocabulary of the anatomy and development of the Zebrafish			Stars 6
aism	Ontology for the Anatomy of the Insect SkeletoMuscular system	The AISM contains terms used in insect biodiversity research for describing structures of the exoskeleton and the skeletomuscular		QC ERROR 1 Cc) BY	Stars 11

OBO foundry: https://obofoundry.org/

- Lots of available resources
- Collection of largely science/biology-based ontologies
- Ontologies have been vetted*
 - Rating system*
- P1) Open
- P2) Common Format common formal language (BFO/COB compliant)
- P3) URI/Identifier Space ex. http://purl.obolibrary.org/obo/UPHENO_3000004
- P4) Versioning
- P5) Scope extent of the domain or subject matter it intends to cover.
- P6) Textual Definitions define terms
- P7) Relations Relations should be reused from the Relations Ontology (RO).
- P8) Documentation
- P9) Documented Plurality of Users **
- P10) Commitment To Collaboration
- P11) Locus of Authority There should be a person who is identifiably in charge
- P12) Naming Conventions The names in an ontology must be intelligible to scientists and amenable to natural language processing. <u>Primary labels should be unique among OBO Library ontologies.</u>
- P13) Notification of Changes
- P16) Maintenance
- P20) Responsiveness

Selecting terms

Ex. Data: Rat/Mouse/Guppy with liver adenoma, adenoma or carcinoma

tumor: MPATH:353 hepatocellular adenoma

Disease: MONDO:0018902/DOID:0050868 hepatocellular adenoma

Phenotype: MP:0003324 Increased liver adenoma incidence

ZP:0103622 hepatocellular adenoma liver increased amount, abnormal

Selecting terms

Ex. Data: Rat/Mouse/Guppy with liver adenoma, adenoma or carcinoma

tumor: MPATH:353 hepatocellular adenoma

- MPATH= <u>Mouse</u> pathology ontology
- Does not have an issue tracker.
- There is a contact information and there is will to make minimal changes to the ontology.

Disease: MONDO:0018902/DOID:0050868 hepatocellular adenoma

Is_a relationship means this is a human disease.

```
- disease (25,598)

- human disease (22,638)

- cancer or benign tumor (4,709)

- neoplastic disease or syndrome (4,622)

- neoplasm (4,365)

- benign neoplasm (692)

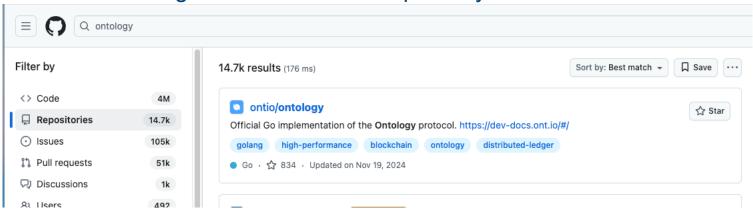
- digestive system neoplasm (735)

- benign digestive system neoplasm (52)

- hepatobiliary neoplasm (142)

- liver and intrahepatic bile duct neoplasm (114)

- hepatocellular adenoma (1)
```


Phenotype: MP:0003324 Increased liver adenoma incidence ZP:0103622 hepatocellular adenoma liver increased amount, abnormal

- Deal with separate phenotype ontologies for adding terms*
- Different phrasing
- ZP is zebrafish ontology

Adding terms/editing ontologies

Github:

Most ontologies have a Github repository.

Can search in Github, but Google search of ontology name +github is the quickest route.

https://github.com/obophenotype/human-phenotype-ontology

https://github.com/obophenotype/zebrafish-phenotype-ontology

https://github.com/mgijax/mammalian-phenotype-ontology

https://github.com/obophenotype/upheno

https://github.com/monarch-initiative/mondo

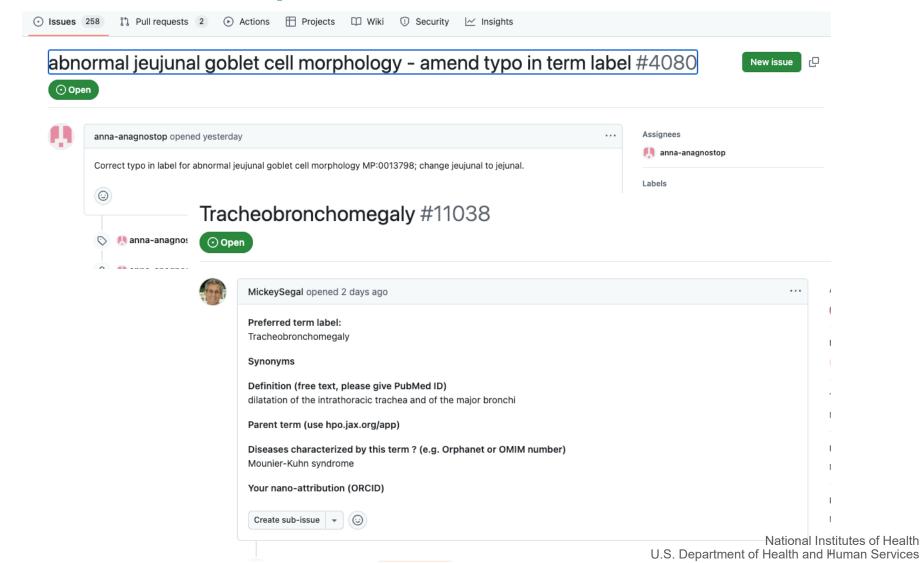
https://github.com/EnvironmentOntology/envo

https://github.com/ebi-chebi/ChEBI

https://github.com/obophenotype/uberon

https://github.com/geneontology/go-ontology

https://github.com/obophenotype/cell-ontology


https://github.com/PROconsortium/PRoteinOntology

What makes a good github ticket?

https://oboacademy.github.io/obook/explanation/writing-good-issues/

- Search existing issues before creating a new one
- Short, descriptive title
- Short explanation of the problem and include an example
- Mention related issues (use # for same repo, and url for different repo)
- Tag users who should be aware of the issue
- Give specifics about how to complete/close ticket.
- Be polite!

Good* term requests

Additional Resources

- OBO academy https://oboacademy.github.io/obook/
- Lessons:

Contributing to OBO ontologies

Ontology Pipelines with ROBOT

Developing an OBO Ontology

Ontology Design

Disease and Phenotype Ontologies

Leveraging ChatGPT for ontology curation

Using Ontologies in Practice--LinkML can help

Tutorials:

Protégé

Ontology Pipelines - ODK, ROBOT, etc,

Templates

Git, GitHub and Collaborative Workflows

OntoGPT

Command line

Exomiser

Information Extraction

Additional Resources

- OBO academy https://oboacademy.github.io/obook/
 - Youtube account to watch tutorials https://www.youtube.com/@obo-academy
- OBO foundry https://obofoundry.org/
 - Principles and best practices
- Ontology editor: https://protege.stanford.edu/
 - https://protege.stanford.edu/publications/ontology_development/ontology101.
 pdf
- Tutorial: Introduction to RDF and OWL
 - https://github.com/CSIRO-enviro-informatics
- EMBL-EBI Training https://www.ebi.ac.uk/training/on-demand
 - Ontology trainings and tutorials

Conclusion

- Data standards are critical to integrating data
- Ontologies are especially helpful by establishing relationships.
- Following ontology development best practices aids all users of ontologies
- There is no one way to annotate data, but using ontology terms aids in linking data
- There is no perfect ontology. There are mistakes, and areas that are not as well covered. As a user, it is critical to help an ontology by requesting terms, fixing errors

Thank You.

- Office of Data Science
- Charles Schmitt, PhD
- Darius Bost, PhD
- Mike Conway, MSc
- Jennifer Fostel, PhD
- Rupali Gupta, PhD
- Ying Liu, PhD, MBA
- Sue Nolte, MSc
- Deep Patel, MSc
- Maria Shatz, PhD, MSc
- Amlan Talukder, PhD