Coal ash and children's neurobehavioral health: An on-going study.

Kristina M. Zierold, PhD, MS
Epidemiology and Population Health
School of Public Health, University of Louisville
Kristina.Zierold@Louisville.edu
(502) 852-0251
What is Coal Ash?

- When coal is burned for energy, coal ash waste products result.

- Geochemical make-up of the coal used and the burning process determines the waste produced:
 - Fly Ash
 - Bottom Ash
 - Boiler Slag
 - Flue gas desulfurization (FGD) gypsum

- Fly Ash is predominate.
Fly Ash

- Fly ash = small (PM10), spherical particles
- Silt-like

- May be comprised of **hazardous** components
 - Some are toxic or radioactive
 - Metals: chromium, lead, mercury, titanium, manganese
 - Radioactive: radium, uranium
 - Others: dioxins, polycyclic-aromatic hydrocarbons (PAHs)
Fly Ash

- Not considered a hazardous waste
- Fly ash is stored in landfills and ponds, usually near residential neighborhoods
- 2015 – Disposal of Coal Combustion Residuals from Electric Utilities Rule
- ~56% coal ash is reused in products like concrete
Health Studies - Very Limited

• Several Occupational (fly ash exposed)
 ▫ Higher levels of arsenic and mercury compared to healthy controls
 ▫ Increased genetic mutations and cell damage
 ▫ Decreased lung function
 ▫ Increased birth defects
 ▫ Neurological outcomes

• Prenatal followed up after birth (before and after plant closure)
 ▫ 1st study found decreased developmental factors (language, motor development, etc.)
 ▫ 2nd study found no decrease
Fly Ash from Coal Burning

<table>
<thead>
<tr>
<th>Fly Ash Component</th>
<th>Health Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic compounds (Inorganic)</td>
<td>Skin lesions, peripheral neuropathy, cardiovascular problems, associations with skin, lung, and bladder cancers, possible effects to pregnant women and fetuses</td>
</tr>
<tr>
<td>Lead compounds</td>
<td>Damage to nervous system, kidneys, and reproductive system, hypertensive effects, and damage to hearing</td>
</tr>
<tr>
<td>Chromium compounds</td>
<td>Lung cancer, respiratory and gastrointestinal damage, asthma, pneumonia, bronchitis, possible complications in pregnancy and childbirth, anemia</td>
</tr>
<tr>
<td>Mercury compounds</td>
<td>Damage to the nervous system, heart, kidneys, lungs, and immune system. Neurological damage to developing fetus</td>
</tr>
<tr>
<td>Cadmium compounds</td>
<td>Metal fume fever, kidney disease, bronchiolitis, emphysema, anemia, reduction in sperm number, low birthweight, possible other reproductive effects, lung cancer</td>
</tr>
<tr>
<td>Uranium, thorium, radium, radon</td>
<td>Lung cancer, pancreatic cancer, bone cancer, lymphoma, leukemia, aplastic anemia</td>
</tr>
</tbody>
</table>
2012-2014 - Pilot Study with the Community Around One Power Plant

• Mixed-methods study assessing prevalence of health conditions

• Organized 11 community leaders, from 4 neighborhoods near the plant
 ▫ Non-transient, long-term community members
 ▫ Interested in environmental health
 ▫ Helped with questionnaire development, recruitment, planning, etc.

• Findings in short
 ▫ Prevalence of behavioral and emotional conditions (ADHD, learning disabilities, conduct problems) greater than USA

• Example: ADHD = 38.3% exposed, 16% in comparison group 6.8% in US.
Specific Aims of Current NIEHS Grant

• Characterize indoor exposure from fly ash and heavy metals in homes of children residing near coal ash storage sites compared to children living further away from coal ash storage sites.

• Determine if the heavy metal body burden differs from children residing near coal ash storage sites compared to children living further away from storage sites.

• Assess if increased fly ash exposure and greater heavy metal body burden is associated with poorer neurobehavioral performance and more neurobehavioral symptoms.

• Utilize mapping, spatial analysis and modeling applications of geographic information systems (GIS) for household recruitment, analysis of distance decay effects, surface interpolation of Aims 1 and 2 results, and fate and transport modeling of fly ash.
To accomplish the aims...

- Overall, recruit 300 children throughout west and southwest Louisville, over 5 years
 - Aged 6-14
 - Live within 10 miles of the power plants/storage sites
 - “Shoe-Leather” methods
 - Mailings to neighborhoods
 - Stores/schools/other
As of Sept 2017

Each buffer is two miles.

Study outlier

Season
- Fall
- Spring
- Summer
- Winter
Exposure Assessment

- Air Sampling – in home
 - PM$_{10}$ (PIXE)
 - Fly Ash (SEM/EDX)

- Lift Sampling for fly ash (SEM/EDX)

- Collection of nail samples for metals analysis (PIXE)
Outcome Measures

- **BARS**
 - Behavior Assessment Research System
 - Series of computer tests that measure performance
 - Attention, memory, fine motor skills, response speed

- **Purdue pegboard, Beery VMI, Object Memory**

- **Child Behavior Checklist**
 - Evaluated as continuous
 - Evaluated as dichotomous (borderline/clinical vs. not)
Test Used and Measurement

<table>
<thead>
<tr>
<th>Neurobehavioral Test</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger tapping</td>
<td>Response speed and coordination</td>
</tr>
<tr>
<td>Symbol digit</td>
<td>Coding/Information processing speed</td>
</tr>
<tr>
<td>Match to Sample</td>
<td>Visual memory</td>
</tr>
<tr>
<td>Digit Span</td>
<td>Memory and attention</td>
</tr>
<tr>
<td>Continuous Performance</td>
<td>Sustained attention</td>
</tr>
<tr>
<td>Beery VMI</td>
<td>Hand-eye coordination</td>
</tr>
<tr>
<td>Object Memory</td>
<td>Recall and recognition memory</td>
</tr>
<tr>
<td>Perdue Pegboard</td>
<td>Dexterity</td>
</tr>
</tbody>
</table>
Additional Items Used

- **Questionnaires**
 - **Environmental Health History**
 - 108 multiple choice/Likert scale
 - Developed based on other pediatric environmental exposure history guides
 - **Home Cleaning**
 - 9 multiple choice

- **Activity Diary**
 - Filled out by participant during the sampling week

- **Pediatric Health History**

- **Home Exposure Assessment**
 - Pediatric Environmental Home Assessment form
Role of Community Leaders

• Be recognized as leaders in their neighborhoods
 ▫ Answer questions from neighbors
 ▫ Explain and support study

• Help recruit
 ▫ Identify other avenues for recruitment

• Provide feedback on study methods, recruitment methods

• Community members as citizen scientists also important
 ▫ Snowball sampling
To date..

• Have consented/assented 162 children and one of their parents
 ▫ 46% of homes have had fly ash on their filters
 ▫ 62% of homes have had fly ash on their lift tape sample

• Most common metals/metalloids found in PM10
 ▫ Aluminum, Titanium, Silicon, Arsenic, Manganese, Chromium

• Most common metals/metalloids in fly ash
 ▫ Aluminum, Iron, Silicon, Potassium, Titanium
What’s going on with the data?

- Preliminary Results - 2 PhD dissertations, 2 MS theses
 - The particulars about particulates: Exposure to metals and self-regulation of children living near coal ash storage
 - Pediatric anxiety and/or depression problems: Associations with PM10, fly ash, and metal exposure
 - Coal ash exposure and neurobehavioral performance
 - Coal ash exposure and childhood asthma

- 9 abstracts presented of preliminary findings

- Some patterns in data
 - Elevated Odds Ratios
 - Aluminum, copper, manganese relationships

- Findings will be better understood after the entire sample is recruited in 2020.
Acknowledgements

- NIH/NIEHS (R01ES024757)
- Co-Investigators
 - Lonnie Sears, PhD
 - Carol Hanchette, PhD
 - Barbara Polivka, PhD
 - Guy Brock, PhD
- Current and Previous Students
 - Clara Sears, MS, PhD
 - Abby Burns, MPH, PhD
 - Lindsay Tompkins, MS, Doctoral Student
 - Chisom Odoh, MPH, Doctoral Student
 - Jack Pfeiffer, MS, Doctoral Student
- Other Students for current project and pilot project
- Community Leaders
- Community Participants

Much more to come, when the study is done...