Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Compound From Mold Linked to Symptoms of Parkinson's Disease

Gary Miller, Ph.D., Jason Richardson, Ph.D.
Emory University, Rutgers Robert Wood Johnson Medical School
NIEHS Grants P30ES019776, R01ES015991, P30ES005022

NIEHS grantees report that an organic compound emitted by mold might be linked to Parkinson's and other neurodegenerative diseases in humans. Studies have found evidence that several environmental agents, especially pesticides, are possible risk factors for Parkinson’s disease, but this is the first naturally occurring environmental agent identified as a potential risk factor.

Exposure to fungi has been linked to movement disorders as well as loss of balance and coordination, but the mechanisms involved in these health effects are unknown. To find out more about the possible toxicological effects of fungal volatile organic compounds associated with indoor environments, the researchers screened a variety of fungal toxicants using fruit flies. The volatile fungal semiochemical 1-octen-3-ol emerged as one of the most potent agents they tested. 1-octen-3-ol is commonly emitted by molds and is responsible for much of the moldy odor associated with fungal colonization.

Parkinson’s disease is associated with the loss of neurons that produce the neurotransmitter dopamine. The researchers found that low levels of 1-octen-3-ol reduced dopamine levels and caused dopamine neuron degeneration in the fruit flies. Genetic and cell culture studies revealed that 1-octen-3-ol most likely exerts toxicity by disrupting dopamine handling. The agent also increased loss of dopaminergic neurons through interactions with genetic variants of the vesicular monoamine transporter (VMAT), which is involved in dopamine biosynthesis.

Citation: Inamdar AA, Hossain MM, Bernstein AI, Miller GW, Richardson JR, Bennett JW. 2013. Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proc Natl Acad Sci U S A 110(48):19561-19466.

to Top