Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

What's New

Superfund Research Program

May 03, 2019 New

NC Fish Forum Brings Partners Together to Improve Fish Consumption Advisories

Breakout Group

Breakout groups discussed suggestions to improve the fish consumption advisory process.
(Photo courtesy of the Duke SRP Center)

On March 21, the Duke University Superfund Research Program (SRP) Center convened stakeholders from across North Carolina in Raleigh to discuss fish consumption advisories and how to improve the process to best protect public health. NC Fish Forum attendees focused on known risks like mercury, as well as emerging contaminants such as per- and polyfluorinated compounds.

Participants included members of state and local environmental, public health, and wildlife management agencies, as well as sport fishermen and riverkeepers. At the start of the half-day meeting, North Carolina Department of Health and Human Services officials walked through the current fish consumption advisory process. Next, the attendees shared thoughts about how the process might be improved. Suggestions included simpler messaging and more engagement with subsistence fish consumers.

Participants discussed ways to improve communication between government agencies and the public and how to create more effective fish consumption advisory signs. Following the full group discussion, attendees divided into breakout groups to delve into the identified challenges. Attendees were asked to focus on what an ideal fish consumption advisory process might look like and concrete actions that could help bring them closer to that ideal. At the end of the day, attendees reflected on goals and future challenges and discussed how to turn these conversations into meaningful action.

NC Fish Forum Whiteboard
Mike Schlegel, visual notetaker and founder of the Whiteboard Academy, helped facilitate the forum and worked throughout the day to capture a visual summary of the key points and discussions, shown here. Schlegel also has a background in watershed science, so he offered a uniquely informed perspective on the issue. (Image courtesy of the Duke SRP Center)

End of Story

May 02, 2019 New

Jerry Schnoor Receives 2019 ACS Award for Innovative Plant-Based Cleanup Advances

Jerry Schnoor, Ph.D.

Schnoor is the Allen S. Henry Chair in Engineering and a professor of civil and environmental engineering at the University of Iowa.
(Photo courtesy of the University of Iowa)

Jerry Schnoor, Ph.D., a University of Iowa Superfund Research Program (SRP) Center project leader, received the American Chemical Society (ACS) Award for Creative Advances in Environmental Science and Technology during the ACS Spring 2019 National Meeting, held March 31 - April 4 in Orlando, Florida.

Schnoor has pioneered the science and practice of phytoremediation, which uses plants and microbes to reduce toxicants in the environment. It is a natural, green, and cost-effective way to clean up hazardous waste sites, contaminated soil and groundwater, and agricultural runoff.

During the award ceremony, Joel Burken, Ph.D., a former SRP grantee, described Schnoor as a "thought leader and scientist," and indicated that "few if any other individuals or labs have covered this breadth of the science and engineering in the field."

Currently, Schnoor leads an Iowa SRP Center project using phytoremediation to degrade polychlorinated biphenyls (PCBs) from soil and groundwater. PCBs are classified as human carcinogens and have been banned from the United States since 1979. However, they are still found in water, soil, sediment, and animal and plant tissue.

Because phytoremediation puts plants in direct contact with these toxicants, understanding the fate of these chemicals and how plants help in the degradation process is important. According to Burken, Schnoor has laid a solid foundation for understanding what happens to pollutants after they are taken up by plants.

In his award address, Schnoor spoke about how plant science has changed the field of environmental chemistry, contributing to the cleanup of contaminated sites. He also explained how the microbes within plants are beneficial in removing pollutants.

ACS Award Special Symposium

In addition to receiving the award, Schnoor was honored through a special symposium, where those inspired by his work were invited to give lectures. Iowa SRP Center Director Keri Hornbuckle, Ph.D., and Iowa SRP Center researchers Tim Mattes, Ph.D., and Benoit Van Aiken, Ph.D., were among those who discussed their research. Each scientist explores how PCBs impact a specific part of the global ecosystem.

Hornbuckle discussed her work to identify sources of PCBs in indoor air, including PCB emissions from paint, chalk, and paper. Her research has shown that the inhalation of indoor airborne PCBs might be just as important as exposure to PCBs through diet.

Van Aiken described his recent study in which he identified plant genes that stimulated the breakdown and detoxification of certain PCBs.

Lastly, Mattes described his research on PCBs in aquatic sediments and the roles of microorganisms and genes in PCB sediment cleanup, which may lead to improvements in PCB sediment removal strategies.

ACS attendees
American Chemical Society special symposium attendees and presenters
(Photo courtesy of the Iowa SRP Center)

April 24, 2019

Translating Research to Assessments and Planning for a Changing Climate

Jennifer Horney

Jennifer Horney, Ph.D.
(Photo courtesy of the University of Delaware)

Two Texas A&M University (TAMU) Superfund Research Program (SRP) Center projects are translating their research to help communities facing impacts and health risks from climate-related disasters, such as wildfires and flooding. These projects are improving community assessments and resilience planning in areas facing these challenges.

For example, their earlier work helped inform a recent guide for local municipalities called Climate Change, Health, and Equity: A Guide for Local Health Departments, produced by the Public Health Institute Center for Climate Change and Health. The guide cites a project led by Katie Kirsch and Jennifer Horney, Ph.D., of the University of Delaware. Kirsch and Horney are now members of the TAMU community engagement core (CEC), with Horney serving as the CEC leader.

The guide suggests actions that municipalities can take when wildfires occur, citing the team's findings from a Community Assessment for Public Health Emergency Response (CASPER) survey following a large wildfire in Bastrop, Texas in 2011. Their work showed how the CASPER survey quickly provides household-level information about community needs after a disaster at a relatively low cost and informs decision making for preparedness, planning, and recovery.

Katie Hirsch

Katie Hirsch
(Photo courtesy of TAMU)

Horney also worked with another TAMU SRP researcher, Galen Newman, Ph.D., to help develop a Resilience Scorecard for the Department of Homeland Security's Coastal Resilience Center. Newman is an associate professor in the TAMU Department of Landscape Architecture & Urban Planning and a member of the TAMU CEC. They applied the scorecard in the Geodesign process to assess flood vulnerability and develop a resilient master plan for League City, Texas. Geodesign is an approach to community development planning that integrates several fields of science in strategies that anticipate climate-related impacts like rising sea levels. The scorecard uses projections for the 100-year floodplain based on the anticipated sea-level rise by 2100.

The TAMU SRP Center is developing and applying tools to address hazardous exposures during environmental emergencies to help communities measure impacts and prevent problems in the future. Specifically, it is focused on understanding how flooding during natural disasters might redistribute hazardous substances. These projects illustrate how the TAMU CEC is translating its research to help towns, cities, and community members better protect their health.

to Top