Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

SRP Researchers Share Findings at Exposome Conference

Robert Wright speaking to an audience.

Wright gave introductory and closing remarks during the symposium.
(Photo courtesy of the Institute for Exposomic Research at the Icahn School of Medicine at Mount Sinai)

Current and former Superfund Research Program (SRP) researchers described their work and learned from others as part of the New York City Exposome Symposium Nov 2 – 3. The symposium delved into innovative approaches in exposomics, the study of how the complex mix of nutritional, chemical, and social environments shapes human health throughout the lifespan.

The meeting was organized by the Institute for Exposomic Research at the Icahn School of Medicine at Mount Sinai. Robert Wright, M.D., a professor and chair of environmental medicine and public health at Mount Sinai, directs the institute. Wright previously worked with the Harvard University SRP Center for 20 years, where he progressed from a trainee to overall center director.

As part of the meeting, University of California, Berkeley SRP Center researcher Stephen Rappaport, Ph.D., described his work to capture diverse exposures and interactions between genes and the environment by measuring compounds in blood or other archived biospecimens. According to Rappaport, characterization of the exposome requires a battery of untargeted methods, notably metabolomics and proteomics, which are large-scale studies of metabolites and proteins. In addition to his work to characterize exposures based on blood samples, Rappaport also has shown that saliva may be a practical alternative to blood for characterizing a person's exposures. His work shows how saliva contains important molecular information and can be measured over time to construct individual exposure histories and discover risk factors for disease.

"I was surprised at the diversity of the audience and the new directions that they are taking to explore the exposome concept," Rappaport said of the meeting. "Although the exposome was originally conceived in the context of finding causes of cancer, researchers are now using exposomics to emphasize the vast range of exposures and how this knowledge can be used to identify and reduce disease risks."

Oregon State University SRP trainee Holly Dixon presented their research using silicone wristbands to assess personal chemical exposures. The simple wristbands and extraction method, developed with SRP and other NIEHS funding, can test exposure to 1,200 chemicals.

Manish Arora, Ph.D., a former trainee from the Harvard SRP Center and current Mount Sinai professor, discussed his research to uncover early-life exposures to chemical mixtures by analyzing chemical signatures in baby teeth.

The meeting covered challenges of generating high-quality untargeted chemical screens, methods to generate novel exposure data, wearable devices, and other new findings in the field. SRP researchers in attendance shared their innovative findings and learned new approaches to exposomics.

"No one is exposed to one chemical at a time," Wright said for a recent NIEHS feature. "Everything in life is a mixture, and if we are going to understand why people develop disease, we have to realize that all the factors around us – the built environment, chemicals, social stressors, and nutrition – interact synergistically. The multidisciplinary approach within SRP trained me to think holistically about the impacts of toxic waste and the importance of integrating social stressors, genetics, nutrition, and mixtures in environmental health research," he said.

Back
to Top