Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

What's New

Superfund Research Program

June 19, 2019 New

Rusyn Receives Inaugural University Professorship, Names it After K.C. Donnelly

Ivan Rusyn, Ph.D.

Rusyn was recognized May 8 at a celebration of distinguished faculty at Texas A&M. From left, Eleanor M. Green, D.V.M., dean of the TAMU School of Veterinary Medicine & Biomedical Sciences; Jane Welsh, Ph.D., head of the department of veterinary integrative biosciences; Rusyn; and Blanca Lupiani, Ph.D., dean of faculties and associate provost.
(Photo courtesy of Texas A&M University)

Ivan Rusyn, Ph.D., director of the Texas A&M University (TAMU) Superfund Research Program (SRP) Center, became one of the first five TAMU faculty members to be awarded the title of University Professor. This honor recognizes scholars who have demonstrated significant accomplishments in their field. Rusyn specializes in analyzing the combined effects of multiple chemicals on human health and leads the TAMU SRP Center, which focuses on addressing exposure to mixtures during environmental emergency-related contamination events.

As part of the University Professor accolade, the recipient can name their professorship for a faculty member that had a significant impact on their career and studies. Rusyn chose the late Professor K.C. Donnelly as his award's namesake. Donnelly was a longtime SRP grantee who worked on environmental and occupational health projects. Before his death in 2009, Donnelly was a dedicated researcher and mentor and a key player in establishing an SRP Center at TAMU.

"This is a humbling honor," Rusyn said. "I am indebted to all of my current and past trainees and colleagues for their hard work and encouragement and feel that this honor is shared by all of them. I also wish to recognize the legacy of K.C. Donnelly, one of the pioneers of environmental health and toxicology at TAMU. K.C. was and remains a role model and inspiration to many toxicologists who work to protect public health in Texas, the United States, and worldwide."

The SRP has also recognized Donnelly's contributions to the program by naming an externship grant after him. The KC Donnelly Externship Award Supplement provides current SRP-funded graduate students and postdoctoral researchers with opportunities to work across disciplines and learn new skills at other SRP-funded sites. This year's awardees are Jill Riddell, a Ph.D. candidate at West Virginia University and Nabil Shaikh, a Ph.D. candidate at the University of New Mexico. The applications are due between January 1 and January 31 of each year.

June 13, 2019 New

TAMU SRP Trainees Receive Valuable Training

TAMU SRP trainees

TAMU SRP Center trainees in HAZWOPER training safety gear.
(Photo courtesy of TAMU SRP Center)

Ten Texas A&M University (TAMU) Superfund Research Program (SRP) Center trainees are now more prepared to respond in a safe manner during an emergency. The trainees, along with Garett Sansom, Ph.D., Community Engagement Core member, each earned their 40-hour Hazardous Waste Operations and Emergency Response (HAZWOPER) certification this May.

The comprehensive week-long course included hands-on activities and focused on safety during hazardous waste site cleanup and emergency response involving hazardous substance releases. Students learned about protective gear, how to deal with various hazards, and how to react in emergency situations.

The certification will be valuable for the trainees in their work at the TAMU SRP Center, which focuses on developing tools and models to address exposures to mixtures during environmental emergency-related contamination events.

Following Hurricane Harvey in 2017, TAMU SRP trainees helped collect soil, mud, and water samples from a neighborhood that faced threats from chemical pollution. The trainees tested the samples for lead, arsenic, and other dangerous chemicals, comparing the post-storm samples to ones gathered before the hurricane hit. With their recent training, the trainees will be better equipped and prepared to stay safe when collecting samples after future environmental disasters and emergency-related events.

June 06, 2019 New

Technology to Reduce Harmful Exposures after Disasters Goes Commercial

Sara Hearon, Tim Phillips, and Meichen Wang

Phillips, center, pictured with co-authors and SRP trainees Sara Hearon, left, and Meichen Wang, right.
(Photo courtesy of the TAMU SRP Center)

Researchers at the Texas A&M University (TAMU) Superfund Research Program (SRP) Center have developed a new technology that can bind to hazardous chemicals in the body after exposure, reducing their uptake in the body. This technology, known as broad acting enterosorbent materials, can be added to food or water to reduce exposure to harmful mixtures of contaminants following natural disasters and other emergencies. It has been patented and granted a worldwide exclusive license to Texas EnteroSorbents, Inc. for commercialization.

Developed by Tim Phillips, Ph.D., and his research team, the enterosorbent materials are made of nutrient-enriched calcium and sodium clays and can bind to complex mixtures of a wide range of hazardous substances, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, furans, pesticides, and metals. By binding to these harmful substances, the enterosorbents reduce the amount that can be absorbed by the body to potentially cause harm.

The Phillips lab has demonstrated that the enterosorbent materials decrease the toxicity of harmful contaminants using Hydra vulgaris, an organism with very low tolerance for hazardous substances. With the new exclusive license, the team aims to develop these materials so they can be delivered in food items during emergencies and natural disasters to reduce the toxicity of harmful contaminants and protect human health.

to Top