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   ToxCast Data from the EPA
 

Activity of the 

Chemical Based on 

Concentration in 

the Well 

Predictive 

Combinations 

of Assays 

In Vivo Hazard 

Prediction and 

Prioritization 

In Vivo 

Endpoints 

A_51_P108645 <= -0.80 

Terminal 

Node 1 

N = 3 

A_51_P161890 <= 0.01 

Terminal 

Node 2 

N = 6 

A_51_P161890 > 0.01 

Terminal 

Node 3 

N = 10 

A_51_P108645 > -0.80 

Node 2 

A_51_P161890 <= 0.01 

Node 1 

A_51_P108645 <= -0.80 
In Vitro High 

Throughput 

Screens 

~300 Biochemical 

Assays 

~200 Cellular 

Assays 

9 Phase I Chemicals 

(Pesticides/HPV) 

30 



  

  

 

 

	 Reproductive  toxicity  signature  

 74% Balanced  Accuracy  

 Pre-filtered assays  and lumped subset 

into into 6  classes  based on genes  and 

functional grouping  

 Only  study  with external validation set  

	
	

	

	 
	 

	 
	 
	 

	 
	 

Rat  liver tumor signature  

No formal classification  statistical analysis 

cross-validation)  (

Developmental toxicity  signature  

71% Balanced  Accuracy  

Pre-filtered assays  and aggregated

assays  based on genes  and GO  

categories  

 

Vascular development signature  

80% Accuracy  

Currently Published Work on Predictive Toxicity
 
Signatures in ToxCast
 

Signature
 
Development
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Why is a Software Company Getting Involved with 

ToxCast? 


Our  life sciences  team has  collaborated with the EPA,  Hamner  

Institute,  NIEHS, UNC, and NC State for many years, and has  its 

roots in toxicology-based microarray data analysis.    

The ToxCast  data is highly valuable and presents numerous  

analytical challenges, several of which  JMP  Genomics  software  can 

help address.    

We wanted to test and stretch the software  in new directions  and 

participate in the project by providing, as  much as  possible, a 

“neutral third party” assessment of the predictive performance of the 

assays. 

Previous work  in collaboration with Fred Wright at UNC; current 

work  in collaboration with Rusty Thomas  at Hamner.  

•	

•	

•	

•	
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1,224 Chemical >600 In Vitro High 60 In Vivo Endpoints from 
Structure Throughput Workflow 

ToxRef Database 
Descriptors Screens 

5-Fold Cross Validation 

8 Classification Algorithms,
 
~12 Feature Selection 


Approaches, 84 Classification 

Range and Central 

Model Combinations 
Tendency of In Vivo
 

Predictive Performance 

Regardless of Statistical
 

Model
 Repeat 10X 

Partition Data 

into 5 Equal 

Sets 

Set 1 Set 

Aside 

Select 

Features 

Build 

Model 

Predict 

Hold Out 

Set 

Model #1 

... 

Model #84 

Repeat 

5X 

Aggregate Aggregate 
No 

Based on GO 

Category Genes 

Based on 
Aggregation 

No 

Pre Filter 
Pre Filter 



  

 

 

 

 

 

 

 

Workflow Details
 

60 Endpoints x 84 Models x 10 Iterations x 5 Folds = 252,000  

separate model fits; computationally intensive.  

Predictive models  include discriminant,  distance  scoring, k-nearest 

neighbors, logistic regression, general linear  model, partial least 

squares, partition trees, and radial basis machine.  

Various  Sets of Predictor Variables:   

1. In 	 Vitro Assays, optionally aggregated 

2. Chemical Structural Descriptors,  computed by Dragon  

All  endpoints are binary, so  performance  criteria include:  Accuracy, 

Balanced Accuracy, Sensitivity, Specificity, Negative Predictive Value 

(NPV), Positive Predictive Value (PPV), and Area Under  the Curve 

(AUC)  

•	

•	 

•	 

•	 



 

 

 

  

 

 

   

 

  

  

 

  

   
 

   

   
 

   

 

   

 

    

 

  

Predictive Performance Criteria for 

Binary Endpoints
 

Prediction
 
Based on
 
In Vitro 

Assays or 

Chemical 

Structure 

In Vivo Animal Response 

Positive Negative 

Positive 

Negative 

Sensitivity 

= TP / (TP + FN) 

TP FP 

FN TN 

PPV 

= TP / (TP + FP) 

NPV 

= TN / (FN + TN) 

Specificity 

= TN / (FP + TN) 

S
e

n
s
it
iv

it
y
 

AUC = 0.5 

Not Predictive 

AUC > 0.5 

Predictive 

1 - Specificity
 

 

 

Accuracy  = (TP  + TN)/(TP  + FP  + FN  + TN)  

Balanced Accuracy  =  (Sensitivity  + Specificity)/2,  

adjusts  for prevalence  

RMSE =  square root  (average (true  value  –  predicted  

probability)2)  

AUC  is  area under the Receiver Operating  

Characteristic  (ROC) curve;  it  measures  sorting 

efficiency  and  is  directly  related to the Mann-

Whitney  rank-sum  statistic;  a value of  1  

indicates  perfect  sorting.  



   

 

Prevalence of Positive Chemicals Among
 
Endpoints Should be Kept in Mind 
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In Vitro Assays 

Chemical Structure 



   

  

In Vitro Assays
 

Chemical Structure
 



   

  

In Vitro Assays 

Chemical Structure 



   

  

In Vitro Assays 

Chemical Structure 



   

 

In Vitro Assays 

Chemical Structure 



   

  

In Vitro Assays 

Chemical Structure 



  

 

   

   

   

     

         

  

  

   

   

   

   

   

  

 

A.
 
F

re
q

u
e
n

c
y

F
re

q
u

e
n

c
y
 

F
re

q
u

e
n

c
y
 

UQ 0.028 (1.020) 

Median -0.078 (0.948) 

LQ -0.201 (0.870) 

Log2 Ratio Median AUCIn Vitro Assays/ Median AUCChemical Structure Log2 Ratio Median AUCIn Vitro Assays + Chemical Structure/ 

Median AUCIn Vitro Assays 

UQ 0.151(1.110) 

Median 0.043 (1.030) 

LQ -0.009 (0.994) 

UQ 0.023 (1.016) 

Median -0.009 (0.994) 

LQ -0.053 (0.964) 

B. 

C. 

Log2 Ratio Median AUCIn Vitro Assays + Chemical Structure/Median AUCChemical Structure 



 

 

 

 

 

0.65 

0.6 

~ 
c 0.55 

! 
f 
i 0.5 

~ 

0,45 

OA 

• • • 

OA 

• • 

0.45 

C_Aet_a.. . _HMdf...-llX.O.W1, Ylii0.1014 

o.s o.ss 0.6 0.65 0.7 

Chemical Sltuctute Madilll 

Chronic Mouse Developmental Rabbit 

Chronic Rat Multi-generational Rat 

Developmental Rat 

 

 



 

   

  

   

 

   

   

 

   

       

 

   

   

   

       

   

   

   

  

 

UQ 0.179 (1.132) 

Median 0.075 (1.053) 

LQ -0.044 (0.970) 

F
re

q
u

e
n

c
y

 

Log2 Ratio Median AUCIn Vitro Assays No Aggregation/ Median 

AUCIn Vitro Assays Gene Aggregation 

F
re

q
u

e
n

c
y
 

Log2 Ratio Median AUCIn Vitro Assays No Aggregation/ Median 

AUCIn Vitro Assays GO Biological Process Aggregation 

F
re

q
u

e
n

c
y
 

UQ -0.101 (0.933) 

Median -0.155 (0.898) 

LQ -0.197 (0.873) 

UQ 0.109 (1.078) 

Median 0.041 (1.029) 

LQ -0.023 (0.985) 

A. B. 

C. 

Log2 Ratio Median AUCIn Vitro Assays No Pre-Filter/ Median AUCIn Vitro Assays With Pre-Filter 

Fig. 12 



 

 

 

 

 Predictability
 

Mean 

(Log2(1/RMSE)) 

Positive 

Prediction 

Negative 

Prediction 



 

 

 

 

Mean 

(Log2(1/RMSE)) 

Positive 

Prediction 

Negative 

Prediction 



 

 

 

 

 

 

 

 

 

•	 

•	 

•	 

•	 

Learning Curves
 

An appropriate way to assess adequacy of sample size in a 

predictive modeling context 

Completely  different from classic power  and sample size 

calculations, which  are designed  for hypothesis  testing, not 

predictive modeling  

Constructed by taking subsets of different sizes  and performing 

cross-validation model comparison on each, then plot results with 

sample size as the x-axis  

An upward trend indicates that  results would likely improve with 

more  samples; a flat curve indicates otherwise.  



 

 

 

 

    

     

CHR_Rat_CholinesteraseInhibition
 
Best model from CVMC = PT_075 (AUC = 0.75583)
 
Worst model from CVMC = KNN_036 (AUC = 0.61631)
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MGR_Rat_ReproductiveOutcome
 
Best model from CVMC = GLM_025 (AUC = 0.54170)
 
Worst model from CVMC = PLS_057 (AUC = 0.49296)
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MGR_Rat_Testis
 
Best model from CVMC = PT_074_025 (AUC = 0.50620)
 
Worst model from CVMC = GLM_020 (AUC = 0.44754)
 

Average Accuracy PT_074 

GLM_020 



 
  

    

 

 

 

 

 

Summary
 
•	 

•	 

•	 

•	 

•	 

•	 

The current ToxCast in vitro high-throughput screening assays provide 

somewhat limited ability to predict in vivo toxic responses. 

Sensitivity  and specificity  of the in vitro assays is related to the balance 

of positive and negative chemicals,  but even for balanced  endpoints,  

the overall predictive performance is relatively  low.  

The  in vitro assays provide somewhat lower predictive performance 

than chemical  structure.  

Aggregating  the assays based  on gene and biological processes did 

not appear to improve predictive performance.  

Pre-filtering the in vitro assay  data, as has been done in  previous 

studies, can significantly  bias estimates of cross-validation performance  

in an optimistic direction.  

Analysis of predictability  and learning curves can help in prioritizing  

chemicals for further study  and  in assessing  adequacy  of sample  sizes.  
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