Investigating pathways of polycyclic aromatic hydrocarbon developmental toxicity in zebrafish with a comparative systems approach

Britton Goodale
Department of Environmental and Molecular Toxicology
Oregon State University

Superfund Research Program Annual Meeting
October 22, 2012
Mechanisms of polycyclic aromatic hydrocarbon-induced developmental toxicity

- PAHs are ubiquitous in the environment
 - Fossil fuels, combustion

- PAH exposures occur primarily via inhalation and ingestion

- Some are human carcinogens

- PAHs are measured in placental tissue

- Recent concern about developmental effects
Mechanisms of toxicity for most PAHs are unknown

- Air particulate matter can contain over 100 PAHs
- Toxicity data is scarce for substituted PAHs

Challenge: how can we efficiently determine developmental toxicity of these compounds and indentify mechanisms of action?
Assessing Developmental Toxicity of PAHs in Zebrafish

- 6 hpf: Expose to chemical
- 24 hpf: Evaluate
- 120 hpf: Evaluate for malformations, Immunohistochemistry

A large adult colony is required to support screening.

1 Embryo/well

Individual test compounds or mixtures dissolved in embryo media.
Differential response profiles induced by PAHs

A. Knecht Poster Presentation- OPAH toxicity screen
Screening biological effects of Portland Harbor passive sampler extracts

Water Passive Sampling

- Bioavailable fraction
- Before and after remediation

- Allan, et al; Bridging environmental mixtures and toxic effects. ET&C 2012
Identifying PAH toxicity pathways

- PAH toxicity is differentially dependent on AHR activation

<table>
<thead>
<tr>
<th>PAH</th>
<th>AHR Dependent</th>
<th>AHR Independent</th>
<th>CYP1A Dependent</th>
<th>DMSO Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAA</td>
<td>25 uM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBT</td>
<td>25 uM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYR</td>
<td>25 uM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transcriptional responses precede malformations

Objectives:
- Define molecular pathways of PAH toxicity
- Identify biomarkers of PAH toxicity

6 hpf
- Expose to 25 μM BAA, DBT, PYR or Control (4 replicates)

24 hpf
- Collect RNA

48 hpf
- Microarray analysis of RNA expression
 (Agilent zebrafish V2 microarray, University of Wisconsin McArld Microarray Facility)

120 hpf
Correlating gene expression changes with PAH body burden

- **6 hpf**: Expose to 1, 5, 10, 25 uM PAH or Control (5 replicates)
- **24 hpf**: Extract with ethyl acetate
- **48 hpf**: Determine PAH body burden with gas chromatography-mass spectrometry (GC-MS, OSU SRP Core D)

120 hpf
Transcriptional profiles are PAH- and time-dependent

OSU SRP Core C

p < 0.05, ANOVA with 5% FDR
BAA induces a distinct expression profile

24hr 24hr 24hr 48hr 48hr 48hr

BAA

24h 38 genes

21

17

48h 107 genes

>2 FC

DBT 24h
PYR 24h
DBT 48h
PYR 48h
BAA 24h
BAA 48h

ZF Gene Symbol/ Probe ID
ahrra
ctrf2b
cyp1a
cyp1a
cyp1a
cyp1a
cyp1b1
cyp1b1
cyp1b1
cyp1b1
cyp1c1
cyp1c1
cyp1c1
cyp1c2
cyp1c2
tox1
sult6b1
DBT and PYR expression profiles

DBT
- 24 hpf: 357 genes
- 48 hpf: 561 genes

24 hr
- 262 genes
- 95 genes

48 hr
- 48 hpf: 656 genes
- 186 genes

PYR
- 24 hpf: 67 genes
- 48 hpf: 191 genes

24 hr
- 5 genes
- 62 genes

48 hr
- 186 genes
Comparing expression between PAHs at 24 hpf: unique profiles?

Unique to BAA

Unique to DBT

Unique to PYR

BAA 26 5

DBT 79 237

PYR 15 10
Differential PAH body burdens

<table>
<thead>
<tr>
<th></th>
<th>BAA</th>
<th>DBT</th>
<th>PYR</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hpf</td>
<td>0.1</td>
<td>3.4</td>
<td>1.0</td>
</tr>
<tr>
<td>48 hpf</td>
<td>0.2</td>
<td>5.3</td>
<td>2.9</td>
</tr>
</tbody>
</table>
DBT-PYR conserved transcriptional response

A. 24 hpf

- \(r^2 = 0.771, P < 0.001 \)
- \(Y = 0.0682 + (0.622 \cdot X) \)

B. 48 hpf

- \(r^2 = 0.647, P < 0.001 \)
- \(Y = -0.0653 + (0.572 \cdot X) \)

Direct comparison filter to identify genes differentially expressed by DBT and PYR (P < 0.05)
<table>
<thead>
<tr>
<th>Biological Process</th>
<th>Downregulated genes</th>
<th>Upregulated genes</th>
<th>%</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hormone metabolic process</td>
<td>cyp1a, cyp1b1, cyp1c1, cyp1c2, si:dkey-94e7.2</td>
<td>farm, krt1, nefm, tpi1b, tnni2b.2</td>
<td>15.79</td>
<td>5.12E-03</td>
</tr>
<tr>
<td>tissue development</td>
<td>mstnb</td>
<td>foxq1l, ptn, si:ch211-173b8.2</td>
<td>21.05</td>
<td>2.77E-02</td>
</tr>
<tr>
<td>fatty acid biosynthetic process</td>
<td>elovl6, fads2, ptgds, si:ch73-131e21.5, tpi1b</td>
<td>ch25h, elovl7a</td>
<td>3.05</td>
<td>6.10E-04</td>
</tr>
<tr>
<td>ion transport</td>
<td>atp2a1l, ctp1b, gabra1, grn1b, KCNAB1, kcnip1b, kcnip3, LOC10000427, rhbg, sfxn4, si:ch211-195b13.1, si:ch211-221p4.4, slc24a5, zgc:101827, zgc:113361, zgc:158296</td>
<td>LOC571584, si:ch211-244h7.4, slc22a18, slc31a1, tmem38b, zgc:162356, zgc:162495</td>
<td>8.30</td>
<td>7.86E-03</td>
</tr>
<tr>
<td>skeletal muscle contraction</td>
<td>homrole, mb, si:rp71-17i16.4, tnni2b.2</td>
<td>ch25h, dhcr7</td>
<td>1.51</td>
<td>1.10E-03</td>
</tr>
<tr>
<td>steroid biosynthetic process</td>
<td>cyp17a1, hmgcs1, hsd17b7, lss, ndshl, rdh8l</td>
<td>ch25h, dhcr7</td>
<td>3.02</td>
<td>9.43E-04</td>
</tr>
<tr>
<td>oxoacid metabolic process</td>
<td>acsf3, ctp1b, elovl6, fabp11b, fads2, ghra, hibadbhb, mdh1b, ptgds, rbp1a, rnp, si:ch73-131e21.5, tpi1b, tyrp1b, zgc:101827, zgc:113361, zgc:158296</td>
<td>ch25h, elovl7a, mthfd1</td>
<td>7.17</td>
<td>1.27E-02</td>
</tr>
<tr>
<td>intermediate filament organization</td>
<td>dnajb6b, krt1-19d, krt23, nefm</td>
<td></td>
<td>1.13</td>
<td>6.71E-03</td>
</tr>
<tr>
<td>negative regulation of cell</td>
<td>bdnf, cd9a, cx43, smad3b, tnfrsf9a, wfdc1, zgc:114127, zgc:158296</td>
<td>agt, msxe, notch2, tbx16, tnfb</td>
<td>4.91</td>
<td>1.67E-02</td>
</tr>
<tr>
<td>proliferation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>muscle cell development</td>
<td>homrole, LOC796577, myoz1a, zgc:158296</td>
<td>myog</td>
<td>1.89</td>
<td>1.89E-02</td>
</tr>
<tr>
<td>sterol biosynthetic process</td>
<td>hmgcs1, lss, ndshl</td>
<td>ch25h, dhcr7</td>
<td>1.89</td>
<td>5.49E-03</td>
</tr>
</tbody>
</table>
Advancing PAH biomarkers and toxicity pathways

RNA-seq to expand and refine pathways with OPAHs and environmental mixtures

- Benzanthrone
- Benz(a)anthracene-7,12-dione
- 9,10-phenanthrene-quinone
- Portland harbor mixture samples

Investigating expression of biomarker genes in a wide range of samples

- OPAHs with differential toxicity profiles
- Environmental mixtures
Conclusions

PAHs induce developmental toxicity through diverse mechanisms

- Body burden data is important for discerning mechanistic vs. uptake differences and relating to other models

Associating toxicity pathways with PAH structures is essential for predicting toxicity

- Applying molecular toxicology to risk assessment

By comparing transcriptional changes induced by a diverse group of PAHs, we hope to identify translatable biomarker genes associated with PAH toxicity
Acknowledgements

Thank you to all members of the Tanguay Lab!
Robert Tanguay, PhD Andrea Knecht
Mike Simonich, PhD Annika Swanson

A special thanks to the staff at SARL for their excellent fish husbandry support

Committee Members at Oregon State University
Daniel Sudakin, MD, MPH
Kim Anderson, PhD
Michael Freitag, PhD
Barbara Taylor, PhD

PNNL
Katrina Waters, PhD
Susan Tilton, PhD

OSU
Anderson lab, SRP Core D

Funding
NIEHS grants P30ES00210, P42ES016465 and T32ES07060.
Questions?