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Why use ‘Omics Data and Systems Models 
to Quantify Hazard and Influence Risk? 

Biological systems are defined by multiple redundant and 
interdependent signaling networks and metabolic pathways 
‘Omics data are useful to broadly assess biological response 
and identify phenotype-associated pathways 
Conserved features of in vivo and in vitro systems can be 
identified 
Quantitative relationships between dose, response and 
outcome can be derived 
Integration of dosimetry between experimental systems and 
human exposure can provide realistic extrapolation of risk 
Predictive models can be used to deconvolute the interactions 
of mixtures mechanistically and quantitatively 
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Current Approaches and Challenges Using 
‘Omics Data for Dose-Response Assessment 

Most ‘omics technologies provide relative quantification, not 
absolute, so comparisons across studies are difficult 
Biological systems are frequently nonlinear; what do you do 
with multiple pathways that fit different regression models? 
Bench Mark Dose approaches use an average of all genes 
within a “pathway” or ontology group; this reduces sensitivity 
and relies on the accuracy of the ontology categories 
Pattern and ontology-based approaches do not account for 
regulatory mechanisms or cross-talk between pathways 
Rarely is time-dependent behavior considered in the 
experiment 
In vivo outcomes are not mirrored in vitro, and “concentration” 
in vitro is not the same thing as “dose” or “exposure” in vivo 
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Example: Macrophage Response to Silica 
Nanoparticles is Dose and Time Dependent 
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Hybrid pathway/regression approach 
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Model Predicts the Evolution of Gene Regulation 
after Exposure to NP and Identifies Key Regulator 
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• Find 

•

Estimating Dose For a No Observable Effect Level  
and Extrapolate to relevant Human Exposure 

Smad5 expression for a 10% increase in 
Cluster 15 expression 
Find the in vitro dose for the Smad5 level of 
expression 

The dose for a 10% increase in Cluster 
15 expression = 96 µg/ml 

MPPD Model 
Particle # or 

Surface 
Area/Cell 

ISDD 
Model 

Equivalent Human Exposure (#/Macrophage)   =  3.9 mg/m3 

Equivalent Human Exposure (#/PulmoPNNLn-SA-ar91685y su rface area)   = 171 mg/m3 8 
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Predicted Regulatory Targets Validated in  
KO Mouse Models of Viral Pathogenesis 

TNFRSF1B KO mice are resistant to Avian Influenza 
and SARS pathogenesis 

H5N1 Avian Influenza infection 
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How to Translate Approaches to Mixtures? 
We Need a LOT More Data 

  
 

Example Studies from Kopec 
TCDD, PCB and mixture 
Time course (5) and dose response 
(8 doses) microarrays 
Integrated histopathology and 
functional outcomes (lipids) 
Chemical concentrations measured in 
 tissues 

Modeling results 
Genes identified as temporal & dose-responsive using non-linear 
models 
Used qPCR to measure quantitative dose-response relationships
for pure chemicals and mixtures 
Statistical models used to determine non-additive effects of gene 
response, consistent with hi
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Kopec, AK, et al. 2010. ToxSci, 118:286-297. 
Kopec, AK, et al. 2011. TAAP, 256:154-167. 
 



Environmental Mixtures are Composed of 
Diverse Chemical Constituents  
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OSU/PNNL Superfund Program is Focused on 
Emerging Health Risks associated with PAHs 

Adapted from Allan et al. (2012) Environ. Toxicol. Chem. 

Willamette 
River Basin

Sampling Site
Portland Harbor
Superfund

Mixture chemistry 
 PCBs 
 PAHs 
 PAH-metabolites 
 Oxy-PAH 

Toxicological response 
 Mortality 
 Carcinogenesis 
 Developmental Morphology 
 Behavior 
 Microarrays/RNAseq 
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Data and Computational Tools are Needed 
to Extrapolate Response and Exposure 

B[a]P

DBC

CON

Mix1

Mix2

Mix3

Using Statistical and Bioinformatics 
tools to identify MOA for PAHs and 
mixtures in mouse and zebrafish  

Developing PBPK models to capture 
PAH metabolism, interactions between 
PAHs, and capture species/life stages 
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PAHs/Mixtures have Unique Gene Signatures 
in Skin Post-Initiation 

***

**
**
**

**

* *
*

Mix1 Mix2 Mix3 DBC B[a]P
Agxt2l1
Aldh3a1
Aldh3a1
Nts
Scgb3a1
--
Gm10639
--
--
Gsta1
Gsta2
Gpx2
Lys14
Lys14
Srxn1
Gsta3
Gsta3
--
Nqo1
Cyp1a1
Cyp1b1
Adh7
--
--
Gm9382
Ahrr
Ccno

-1.5 0 1.5

Fold change (Log2)
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Integration of Pathways Classifies the 
Treatments According to Phenotype 
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Integration of Pathways Classifies the 
Treatments According to Phenotype 

Tumor classification:

1.  Low (Mix1)
2.  Moderate (B[a]P, Mix2, Mix3)
3.  High (DBC)

Response to DNA 
damage stimulus

Regulation of 
apoptosis

Cellular response 
to chemical 
stimulus

Interferon gamma 
signaling
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Developmental Screening in Zebrafish used 
for HTP analysis of Environmental Mixtures 

Two extracts with same total PAHs (µM), but 
different chemical profiles and phenotypes 

Concentration-response 
curves over several dilutions 
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RNAseq Analysis of Zebrafish Exposed to PAHs 
and Mixtures for Phenotype-anchored Analysis 

 
  

 
  

   
 

6 hpf Exposure
3 biological replicates, 20 
embryos per treatment 

group 

1) 1% DMSO Control
2) 10 uM BEZO
3) 10 uM 7,12B[a]AQ
4) PH RM 7W sample
5) PH RM 6.5W sample
6) 1.2 uM 9,10-PHEQ
7) 1% DMSO Control
8) 10 BaP
9) 10 DB[al]P
10) 1 BaP

48 hpf Homogenize 
in RNAzol

Isolate total RNA from all 
samples

Quantify and QC with 
nanodrop and bioanalyzer

 

( x 3 Replicates)
Store at -80 C

mRNA purification, sample 
prep, rnaSeq (50 bp paired 

end reads) 
performed by University of 

Oregon Core

Portland harbor mixtures compared 
to PAH standards and metabolites 
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Evolution of Systems Models from Integrated Data 

Fish Development 

Genomics 

Chemistry Data 

Identify Pathways associated 
with Phenotype and Chemistry 

Subnetwork 
modules 

Regulatory Networks
Predictive Models  

In silico 
knockdowns  

Identify 
regulators -SA-91685 
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Use PBPK Studies to Extrapolate Relevance 
of Zebrafish Studies to Human Exposure 

Simulated maternal blood concentrations of DBC and DBC-11,12-Diol in 
pregnant mice and humans following a single oral dose of 15 mg/kg. 



Conclusions & Research Needs  

Systems models can be useful to unravel the time dependence 
on dose response but calculation of NOEL is tricky 
Validation through experimentation is key to all areas of 
science, particularly those that involve computational modeling 
Modeling of mixtures will require more data on dose-response, 
temporal evolution of response and comparison to pure 
compounds to deconvolute pathway interactions 
Start simple: synthetic mixtures with known concentrations of 
constituents will be needed for computational methods 
development 
Investment in computational models for experimental systems 
without exposure assessment and comparison of dosimetry in 
humans is not interpretable for realistic extrapolation of risk 
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