Fundamentals of Passive Sampler Use at Superfund Sites

Robert M. Burgess
U.S. EPA
Office of Research and Development
National Health and Environmental Effects Research Laboratory (NHEERL)
Atlantic Ecology Division
Narragansett, Rhode Island 02882
burgess.robert@epa.gov
Outline

- Introduction to passive samplers
- What information can passive samplers provide
- Characteristics of passive samplers
 - Types of passive samplers
 - Passive sampler deployment
 - Passive sampler costs
 - Passive sampler theory
 - Technical issues using passive samplers
- Passive sampler application at a Superfund site
- Summary
Conceptual Model of Relationship Between Contaminated Sediments and Aquatic Life

Atmosphere

Wildlife

Water

Mussels

Fish

Interstitial Water

Dissolved and Bioavailable Concentration

Benthic Worms

Diffusion/Advection

(Not to Scale)

U.S. EPA NARPM 2011
Introduction

- How to determine or measure dissolved and bioavailable concentrations in the water column and interstitial waters?

- Why not use conventional sampling methods? Some problems:
 - Water Column
 - Logistically and technically difficult to collect large volumes of surface water and extract
 - Several artifacts including losses to filters and contamination by colloids reduce accuracy of analysis
 - Analytical detection limits are often not sufficiently low
 - Interstitial Water
 - Centrifuge or squeeze interstitial water
 - Similar artifacts as water column
 - Collecting large volumes of interstitial waters is challenging

- Are there other sampling methods for collecting and measuring dissolved and bioavailable contaminants?
Introduction

- Passive samplers
 - Since late 1980s or so
 - Consist of an organic phase (i.e., simple organic film or polymer) which accumulates contaminants from the dissolved phase
 - Semi-permeable membrane devices (SPMDs)
 - Solid phase micro-extraction (SPME)
 - Polyethylene devices (PEDs)
 - Polyoxymethylene (POM)
Introduction

- Types of contaminants sampled
 - Organic compounds
 - Low water solubility
 - Highly hydrophobic, lipophilic and bioaccumulating (medium to large K_{ow})
 - Many legacy contaminants (e.g., PCBs, PAHs, DDTs, Dieldrin)
 - Metals

- Passive samplers behave like aquatic organisms
 - Accumulate contaminants from the dissolved phase
 - Concentrate contaminants into the polymer like animals accumulate contaminants into their lipids (analytically useful)
What information can passive samplers provide at a Superfund site?

(1) Dissolved and bioavailable water column and interstitial water concentrations of many legacy chemicals
 - Compare to Water Quality Criteria (WQC) or other standards or toxicity data

(2) Accumulated concentrations of many legacy chemicals
 - Emulate uptake by aquatic organisms
 - Serve as surrogates for biomonitoring organisms
 - Especially in situations where mussels or fish cannot be used (e.g., low dissolved oxygen, toxicity, low/high temperature constraints)
Conceptual Model of Relationship Between Contaminated Sediments and Aquatic Life

- Atmosphere
- Water
- Passive Samplers
- Contaminated Sediments (Not to Scale)

Diagram includes:
- Mussels
- Fish
- Benthic Worms
- Dissolved and Bioavailable Concentration
- Eagles

The diagram illustrates the flow of contaminants from contaminated sediments through water to aquatic life and ultimately to wildlife.
Types of Passive Samplers

- Fiber-optic cable
 - 2.5 cm
 - 210 um inner glass core
 - 10 - 100 um outer polydimethylsiloxane (PDMS) coating

- SPME
 - 75 um thick

- PED
 - 50 um thick

- POM
 - 75 um thick

- SPMD (polyethylene tubing containing triolien)
 - 70 – 95 um thick
 - 2.5 cm
 - 0.25 m

U.S. EPA NARPM 2011
Passive Sampler Deployment

Water Column

- PED
- POM
- SPME (in copper mesh envelope)
- SPMD
- SPME (in stainless steel mesh cover)

(NHEERL & Brown U)

(NRMRL & Battelle)

U.S. EPA NARPM 2011
Passive Sampler Deployment

Sediment

- SPME (in protective syringe)
- Copper tubing housing
- PED (in aluminum frame)

U.S. EPA NARPM 2011
Passive Sampler Deployment

Polyethylene Device (PED) Moorings

- 25μm & 51μm PEDs
- Water Depth: 3-15 ft
- ~3 ft
- ~15 ft

U.S. EPA NARPM 2011
Passive Sampler Costs ($/sampler)a,b

<table>
<thead>
<tr>
<th>Type</th>
<th>Materials (samplers and deployment equipment)</th>
<th>Preparation (dialysis)</th>
<th>Chemical Analyses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (5 L)</td>
<td><5</td>
<td>-</td>
<td>525</td>
<td>530</td>
</tr>
<tr>
<td>SPMD</td>
<td>350</td>
<td>115</td>
<td>350</td>
<td>815</td>
</tr>
<tr>
<td>SPME</td>
<td>~35</td>
<td>-</td>
<td>275</td>
<td>~310</td>
</tr>
<tr>
<td>PED</td>
<td>~15</td>
<td>-</td>
<td>375</td>
<td>~390</td>
</tr>
<tr>
<td>POM</td>
<td>~50</td>
<td>-</td>
<td>375</td>
<td>~425</td>
</tr>
</tbody>
</table>

a 2011 Battelle costs (L Lefkovitz, Duxbury, MA, USA)

b Assume 10 - 20 samples, GC/MS analysis of NOAA PCB list (20 congeners)
Water Column

PCB molecule

Passive Sampler (e.g., PED or POM)

Initial concentration of PCBs in passive samplers = 0 ng/mL

Passive Sampler Theory
Passive Sampler Theory

Equilibrium Sampling

Deployment Time (days)

Concentration (ng/mL Passive Sampler)
Passive Sampler Theory

\[C_{D} = \frac{C_{\text{Sampler}}}{K_{\text{Sampler-D}}} \]

where,
- \(C_{D} \) is the dissolved concentration of a contaminant (ng/mL),
- \(C_{\text{Sampler}} \) is the passive sampler concentration (ng/mL),
- \(K_{\text{Sampler-D}} \) is the passive sampler-dissolved partition coefficient

Apparent equilibrium
Technical Issues using Passive Samplers

Establishing when equilibrium occurs

- Unless deployment time series data is available (i.e., $$$)

- Challenge in all monitoring (including biomonitoring)
 - Often assume 28 days is sufficient

- Solution: Use of performance reference compounds (PRCs) to establish equilibrium
 - SPMDs, PED, POM
Technical Issues using Passive Samplers

- Relating passive sampler accumulation to animal bioaccumulation

- Critical for determining how to interpret passive sampler data

- Data on passive sampler accumulation to animal bioaccumulation

- Solution: Generate general linear models

Animal Concentration (ng/g) = \alpha + \beta \times \text{PED Concentration (ng/mL)}

\text{PED Concentration (ng/mL)} = \frac{100000}{\text{Mussels}}

\text{Correlation Coefficient: } r^2 = 0.88

1:1 Line

U.S. EPA NARPM 2011
Passive Sampler Application

Palos Verdes Superfund Site

- Water Column and Sediment Deployments
 - Los Angeles (CA)
 - Carmen White (RPM)
 - Deep water marine site (60 m)
 - DDTs & PCBs
 - Seven water column stations and five sediment stations

- Objectives
 - Determine water column concentrations of contaminants resulting from remediation activity (before, during, after)
 - Determine magnitude of flux of contaminants into the water column from sediments
 - Compare different types of passive samplers (PED, POM, SPME)
Passive Sampler Application

Deployments

Water Column – PEDs (flow meter deployment)

Sediments – PEDs, POMs & SPME (flux platform deployment)
Passive Sampler Application

Passive Sampler-based Total Dissolved PCBs versus AWQC (prior to remediation)

Aquatic Life
AWQC

Human Health
AWQC

Concentration (pg/L)

Station

B1 B2 B3A B3B B5 B6A B6B
Passive Sampler Application
SAMS guidance document in preparation for using passive samplers at Superfund sites

OSWER Directive 9200.1-96FS
February 2012
Summary

Passive sampling a scientifically sound and cost-effective approach for monitoring contaminant concentrations in the water column and sediment interstitial waters.

Passive samplers provide information on:
- Dissolved and bioavailable concentrations of contaminants
- Sampler uptake may serve as a surrogate for animal bioaccumulation

Applications include:
- Monitoring water column concentrations before, during and after remediation
- Determining sources of contaminants released from sediments to the water column (e.g., site model development)
- SAMS guidance document in preparation