

# Associations of glutathione and arsenic methylation in Bangladesh

Megan Niedzwiecki, PhD student Department of Environmental Health Sciences Mailman School of Public Health Columbia University



#### http://superfund.ciesin.columbia.edu







### Arsenic is methylated in the body



### Arsenic is methylated via one-carbon metabolism



Oxidative stress may decrease arsenic methylation in two ways:

- 1. Upregulation of GSH production leads to decreased SAM production
- 2. Changes in redox inhibit methyltransferase enzymes

## **Glutathione and oxidative stress**

 $\bigcirc$ 



### **One-carbon metabolism under pro-oxidant conditions**





### Redox, E (mV) calculation, and interpretation

<u>Redox state</u> = energetic force for electron transfer; measures ability of compound to donate or receive electrons (*reduction potential*)

Nernst equation:

- E (mV) = E<sub>0</sub>(-RT/*n*F) \* In([reductant]/[oxidant])
- $E(mV) = -264 30 * \log([GSH]^2/[GSSG])$

 $E_0$  = standard reduction state at pH 7 (-264 mV for GSH)

- R = gas constant
- T = temperature in Kelvin
- *n* = number of transferred electrons
- F = Faraday's constant

### $\bigcirc$

### Intracellular redox state influences enzyme activity





SAM-dependent methyltransferases

AS3MT



Hypothesis: Increased oxidative stress is associated with decreased arsenic methylation.

•H1. Decreased GSH is associated with decreased As methylation, which may be mediated by a decrease in SAM.

•H2. Increased GSSG and Eh(bGSH) (*indicators of a more oxidized intracellular redox environment*) are associated with decreased As methylation.

# Folate and Oxidative Stress (FOX) Study

 Cross-sectional study of 379 arsenic-exposed adults in Araihazar, Bangladesh

 Primary focus: examine dose-response relationships between arsenic exposure and oxidative stress H1: Increased GSH production under conditions of oxidative stress leads to decreased SAM, which leads to decreased As methylation.



Is decreased GSH associated with decreased SAM?

YES, overall and folate-sufficient

| Outcome |                  | Folate-sufficient<br>(n=266) |        | Folate-deficient<br>(n=112) |      |
|---------|------------------|------------------------------|--------|-----------------------------|------|
|         | Predictor        | в± se                        | p      | в± se                       | p    |
| hcana   | bGSH, unadjusted | $0.042 \pm 0.012$            | 0.0007 | $0.010 \pm 0.025$           | 0.68 |
| DSAIVI  | bGSH, full*      | $0.037 \pm 0.014$            | 0.0078 | $0.0086 \pm 0.026$          | 0.74 |

betas for bGSH represent 100-unit change in bGSH

\*Adjusted for total urinary As (log), urinary creatinine (log), sex, ever smoking, age (log), betelnut use (log), BMI (log), vitamin B-12 (log), and television ownership

H1: Increased GSH production under conditions of oxidative stress leads to decreased SAM, which leads to decreased As methylation.

- Is decreased GSH associated with decreased As methylation?
  NO
- Is decreased SAM associated with decreased As methylation? **NO**

|                   |       | Folate-sufficient<br>(n=266) |      | Folate-deficient<br>(n=112) |      |
|-------------------|-------|------------------------------|------|-----------------------------|------|
| Outcome Predictor |       | Β±SE                         | p    | в±sе                        | p    |
| 0/ <b>L</b>       | bSAM* | -1.39±0.95                   | 0.15 | -1.79 ±1.54                 | 0.25 |
| 70umas            | bGSH* | -0.093 ±0.20                 | 0.65 | -0.34 ±0.39                 | 0.39 |
| 0/                | bSAM* | $0.19 \pm 0.74$              | 0.80 | 1.19±1.33                   | 0.39 |
| 70UIVIIVIA        | bGSH* | $0.17 \pm 0.16$              | 0.27 | $0.21 \pm 0.34$             | 0.54 |
| 0/ LIDRAA         | bSAM* | $1.20 \pm 1.28$              | 0.35 | 0.59±2.21                   | 0.79 |
| 76UDIVIA          | bGSH* | -0.08 ±0.28                  | 0.77 | 0.14±0.56                   | 0.81 |

betas for bGSH represent 100-unit change in bGSH

\*Adjusted for total urinary As (log), urinary creatinine (log), sex, ever smoking, age (log), betelnut use (log), BMI (log), vitamin B-12 (log), and television ownership

# H2. Oxidative stress is associated with decreased As methylation due to a more oxidized intracellular redox environment.

1. Is increased bGSSG associated with decreased As methylation?

|                      | Folate-sufficient<br>(n=266) |      | Folate-deficient<br>(n=112) |      |
|----------------------|------------------------------|------|-----------------------------|------|
| Outcome <sup>a</sup> | в±sе                         | p    | в±sе                        | р    |
| %ulnAs*              | 0.073±0.76                   | 0.92 | $1.91 \pm 1.12$             | 0.09 |
| %uMMA*               | -0.20 ±0.59                  | 0.74 | 1.61±0.97                   | 0.09 |
| %uDMA*               | $0.12 \pm 1.02$              | 0.90 | -3.53±1.58                  | 0.03 |

2. Is a more positive Eh(bGSH) associated with decreased As methylation?

|         | Folate-sufficient<br>(n=266) |      | Folate-deficient<br>(n=112) |      |
|---------|------------------------------|------|-----------------------------|------|
| Outcome | в± se                        | p    | в±sе                        | р    |
| %ulnAs* | 0.010±0.027                  | 0.71 | $0.08 \pm 0.05$             | 0.10 |
| %uMMA*  | $-0.018 \pm 0.021$           | 0.39 | $0.031 \pm 0.044$           | 0.48 |
| %uDMA*  | $0.008 \pm 0.037$            | 0.83 | -0.11±0.07                  | 0.12 |

a. log bGSSG

\*Adjusted for total urinary As (log), urinary creatinine (log), sex, ever smoking, age (log), betelnut use, BMI (log), vitamin B-12 (log), and television ownership

### Percent InAs, MMA, and DMA by quintile of bGSSG, in folate sufficient



#### %MMA



%DMA

 $\bigcirc$ 

### Percent InAs, MMA, and DMA by quintile of bGSSG, in folate deficient



#### %InAs

 $\bigcirc$ 





\*p<0.05, compared to quintiles 1, 2, and 3

\*p<0.05, compared to quintiles 1, 2, and 3



<sup>%</sup>DMA

<sup>\*</sup>p<0.05, compared to quintiles 1, 2, 3, and 4

# Global DNA methylation by quintile of blood GSSG, by folate nutritional status

# 1 2 3 4 5 GSSG quintile

### Folate deficient



\*p<0.05, compared to quintiles 1 and 2

**Folate sufficient** 

 $\bigcirc$ 

# **Conclusion and future directions**

- Increased bGSSG associated with decreased As methylation capacity in folate deficient
  - Mechanism: Inhibition of methyltransferases or other metabolic changes?
- Opportunities for intervention
  - Antioxidant supplementation
  - Folate supplementation

# Acknowledgements

- UK SRP
- Columbia Superfund Group
  - Dr. Mary Gamble
  - Dr. Joseph Graziano
  - Dr. Megan Hall
  - Dr. Kristin Harper
- Field staff in Araihazar

# Thank you!

- Gamble lab
  - Vesna Iliveski
  - Shelley Qu
  - Brandi Peters
  - Julie Oka
- Graziano lab
  - Vesna Slavkovich
  - Jagoda Balac
  - David Santiago
  - Tiffany Sanchez

# Acknowledgements

- UK SRP
- Columbia Superfund Group
- Dr. Mary Gamble
- Dr. Joseph Graziano
- Dr. Megan Hall

- Gamble lab
  - Vesna Iliveski
  - Shelley Qu
  - Brandi Peters
  - Julie Oka
- Graziano lab
  - Vesna Slavkovich
  - Jagota
  - David Santiago
  - Tiffany Sanchez

# [3']-methyl incorporation (DPM) by quintile of bGSSG, by folate nutritional status

\*Increased DPM = Decreased global DNA methylation



**Folate sufficient** 

#### Folate deficient



\*p<0.05, compared to quintiles 1 and 2

### Demographic and clinical data of subjects in the current study

| Baseline variables | Folate-<br>deficient<br>(<9 nmol/L)<br>(n=100) | Folate-<br>sufficient<br>(≥9 nmol/L)<br>(n=222) | Group<br>difference | Overall<br>(n=322) |
|--------------------|------------------------------------------------|-------------------------------------------------|---------------------|--------------------|
|                    | $505.2 \pm$                                    |                                                 |                     |                    |
| Blood GSH (uM)     | 149.9                                          | $484.5 \pm 185.7$                               | 0.35 <sup>2</sup>   | $491 \pm 173$      |
| Blood GSSG (uM)    | 34.4 ± 19.0                                    | 38.6 ± 18.4                                     | 0.019 <sup>2</sup>  | 37.2 ± 18.6        |
|                    | -200.6 ±                                       |                                                 |                     |                    |
| Eh bGSH:GSSG (mV)  | 11.7                                           | -196.6 ± 13.9                                   | 0.034 <sup>2</sup>  | -197.9 ± 13.4      |
| Plasma GSH (uM)    | $2.5 \pm 0.71$                                 | $2.6 \pm 0.72$                                  | 0.40 <sup>2</sup>   | 2.6 ± 0.72         |
| Plasma GSSG (uM)   | $2.06 \pm 0.66$                                | $2.16 \pm 0.57$                                 | 0.052 <sup>2</sup>  | $2.13 \pm 0.60$    |
| Eh pGSH:GSSG (mV)  | -98.4 ± 6.7                                    | -98.3 ± 7.4                                     | 0.97 <sup>2</sup>   | -98.3 ± 7.2        |
| Plasma Cys (uM)    | 3.55 ± 2.27                                    | 3.89 ± 2.57                                     | 0.26 <sup>2</sup>   | 3.78 ± 2.49        |
| Plasma CySS (uM)   | 53.1 ± 14.7                                    | 57.5 ± 13.1                                     | 0.0037 <sup>2</sup> | 56.2 ± 13.4        |
| Eh pCys:CySS (mV)  | -46.8 ± 15.8                                   | -47.6 ± 17.3                                    | 0.61 <sup>2</sup>   | -47.2 ± 16.8       |
| Blood SAM (uM)     | $1.35 \pm 0.54$                                | $1.23 \pm 0.47$                                 | 0.038 <sup>2</sup>  | $1.27 \pm 0.50$    |
| Blood SAH (uM)     | $0.33 \pm 0.15$                                | $0.30 \pm 0.17$                                 | 0.012 <sup>2</sup>  | $0.31 \pm 0.17$    |

1. Mean ± SD (all such values); 2. P-values determined by Wilcoxon's rank sum test; 3. P-values determined by chi-square test



# **E for various cell processes**

| E(mV)         | Process                                                           |
|---------------|-------------------------------------------------------------------|
| -165          | Necrosis                                                          |
| -185          | G0/differentiated G1                                              |
| -195          | Dephosphorylation threshold of phosphoproteins on serine residues |
| -205 to <-260 | Proliferation                                                     |

# Glutathione



- L-cysteine, L-glutamic acid, and glycine
- Thiol (SH) group acts as proton donor
- Intracellular high (1-10 mM, liver 5-10 mM)
  - GSH
  - GSSG: < 1% of GSH
  - 3 major reservoirs: ~90% in the cytosol, ~10% in the mitochondria, small percentage in the ER
- Extracellular lower (1-10 uM)
- GSH/GSSG usually > 10

# Methods

- Glutathione processing:
  - Blood collected and immediately transferred to Eppindorf tubes containing either
    - 5% perchloric acid (PCA), 0.1 M boric acid and γ-glutamyl glutamate as internal standard (for whole blood GSH), or
    - 100 mM serine borate, 60 units heparin, 0.75 mg bathophenanthrolene, 4.5 mg iodoacetic acid, and γ-glutamyl glutamate
  - Samples centrifuged for 1 min.; 200 μl of supernatant transferred into Eppendorf tubes containing an equal volume of 10% PCA, 0.2M boric acid
  - Samples sent to Columbia for derivatization and HPLC analysis
  - Measure Cys/CySS, GSH/GSSG