Skip Navigation

Your Environment. Your Health.

Selected Publications

Human Metabolism Group

Polymorphisms in Human CYP Enzymes

  1. Goldstein, J.A., Faletto, M.B., Romkes-Sparks, Sullivan T, Raucy, J., Kitareewan, S., Lasker, J.M., and Ghanayem B. Evidence that CYP2C19 is the major (S)-mephenytoin 4’-hydroxylase in humans. Biochemistry 33: 1743-1752, 1994. [Abstract]
  2. de Morais, S.M.F., Wilkinson, G.R., Blaisdell, J., Nakamura, K., Meyer, U.A. and Goldstein, J.A. The major defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269: 15419-15422, 1994. [Abstract]
  3. de Morais, S.M.F., Wilkinson, G.R., Blaisdell, J., Meyer, U.A. Nakamura, K., and Goldstein, J.A. Identification of a new Genetic Defect Responsible for the Polymorphism of S-Mephenytoin Metabolism in Japanese. Mol. Pharmacol. 46: 595-598, 1994. [Abstract]
  4. Sullivan-Klose, T.H., Ghanayem, B.I., Bell, D.A., Zhang, Z.Y., Kaminsky, L.S., Shenfield, G.M., Miners, J.O, Birkett. D.J., and Goldstein, J.A.: The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics, 6: 341-349, 1996. [Abstract]
  5. Blaisdell, J, Mohrenweiser, H., Jackson, J, Ferguson, S, Coulter, S, Chanas, B, Xi, T, Ghanayem, B, and Goldstein, J.A.: Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics. 12: 703-711, 2002. [Abstract]
  6. Blaisdell, J., Mohrenweiser, H., Coulter, S., Ferguson, S.S., Chanas, B., Xi, T., Ghanayem, B., and Goldstein, J.A.: Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 14: 527-537, 2004. [Abstract]
  7. Goldstein, J.A. Invited review: Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Brit. J. of Clin. Pharmacol. 52: 349-355, 2001. [Abstract]
  8. Lee, C.R., Goldstein, J.A., and Pieper, J.A. Cytochrome P450 2C9 Genetic Polymorphisms: A Comprehensive Review of the In Vitro and Human data. Pharmacogenetics 12:251-263, 2002. [Abstract]
  9. Lee, S., Bell,D., Coulter, S., Ghanayem, B., and Goldstein, J.A.: Recombinant CYP3A4*17 is defective in metabolizing the hypertensive drug nifedipine, and the CYP3A4*17 allele may occur on the same chromosome as CYP3A5*3, representing a new putative defective CYP3A haplotype. J. Pharmacol. Exper. Ther. 313: 302-309, 2005. [Abstract]
  10. Lee, S-J., and Goldstein, J.A.: Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms (SNPs) and their detections with genotyping tests. Pharmacogenomics 6:357-371, 2005. [Abstract]
  11. Lee, S.J., van der Heiden, I.P., Goldstein, J.A. and van Schaik, R.H.: A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system. Drug Metab. Disp. 35:67-71, 2007. [Abstract]
  12. Delozier, T.C., Lee, S.C., Coulter, S. J., Goh, B.C., Goldstein, J.A.: Functional characterization of novel allelic variants of CYP2C9 recently discovered in Southeast Asians. J. Pharmacol. Exp. Ther. 315:1085-1090, 2005. [Abstract]
  13. Lee, S.J., Coulter, Perera, L, S.J., Jetten, A., Mohrenweiser, H.M., Jetten, A. and Goldstein, J.A.: Discovery of new coding alleles of human CYP2C26A1* which are potentially defective in the metabolism of all-trans retinoic acid and their assessment in a recombinant cDNA expression system. Pharmacogenet. Genomics 17: 169-180, 2007. [Abstract]
  14. Parikh, S., Ouedraogo, J.B., Goldstein, J.A., Rosenthal, P.J., and Kroetz, D.L.: Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: Implications for malaria treatment in Africa. Clin. Pharmacol Therapeut 82(2):197-203, 2007. [Abstract]
  15. Lee, S.J., van der Heiden, I.P., Goldstein, J.A., van Schaik, R.H.N.: A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system. Drug metabolism and disposition: the biological fate of chemicals 1:67-71, 2007. [Abstract]
  16. Limdi, N.A., Arnett, D.K., Goldstein, J.A., Beasley, T.M., McGwin, G., Adler, B.K., Acton, R.T.: Influence of CYP2C9 and VKORC1 s on warfarin dose, anticoagulation attainment and maintenance among European American and African Americans. Pharmacogenomics 9(5):511-526, 2008. [Abstract]
  17. Limdi, N.A., Goldstein, J.A., Blaisdell, J.A., Beasley, M.T., Rivers, C.V., and Acton, R.T.: Influence of CYP2C9 genotype on warfarin dose among African-American and European-Americans. Personalized Medicine 4(2):157-169, 2007. [Abstract]
  18. Limdi, N.A., McGwin, G., Goldstein, J.A., Baird, M.F., Rivers, C.A., and Acton, R.T.: Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin. Pharmacol. Therapeut. 83(2): 312-321, 2008. [Abstract]
  19. Limdi, N.A., McGwin, G., Goldstein, J.A., Beasley, T.M., Adler, B.K., Acton, R.T., and Arnett, D.K.: Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulant attainment and maintenance dose among European American and African Americans. Pharmacogenomics 9(5):511-526, 2008. [Abstract]
  20. Limdi, N.A., Beasley, T.M., Crowley, M.R., Goldstein, J.A., Rieder, M.J., Flockhart, D.A., Arnett, D.K. and Liu, N.: VKORC1 polymorphisms, haplotypes and haplotype-groups on warfarin dose among African–Americans and European–Americans. Pharmacogenomics 9(10): 1445-58, 2008. [Abstract]
  21. Limdi, N.A., Beasley, T.M., Baird, M.F., Goldstein, J.A., McGwin, G, Arnett, D.K., Acton, R.T., Allon, M.: Kidney function influences warfarin responsiveness and hemorrhagic complications. Journal of the American Society of Nephrology: JASN 20(4):912-921, 2009. [Abstract]
  22. Goldstein J.A., Blaisdell J.A., Limdi N.A.: A potentially deleterious new CYP2C9 polymorphism identified in an African American patient with major hemorrhage on warfarin therapy. Blood cells, molecules & diseases 2009 42(2):155-158. [Abstract]
  23. Englert N, Luo G, Goldstein JA, Surapureddi S. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9. The Journal of biological chemistry 2015 290(4):2264-2278. [Abstract]

Function of Murine CYP2Cs

  1. Wang, H. J.A. Bradbury, J.A. Blaisdell, Goldstein, J.A., and Zeldin, D.C.: Cloning, expression and characterization of three new murine CYP2Cs involved in fatty acid metabolism. Mol. Pharmacol. 65:1-11, 2004. [Abstract]
  2. Andreola, F., Hayhurst, G.P., Luo, G., Ferguson, S.S., Gonzalez, F.J., Goldstein, J.A., and. De Luca, L.M.: Mouse liver CYP2C39 is a novel retinoic acid 4-hydroxylase: Its downregulation offers a molecular basis for liver retinoid accumulation and fibrosis in AHR-null mice. J. Biol. Chem. 279: 343-348, 2004. [Abstract]
  3. Delozier, T.C., Tsao, C.-C., Coulter, S.J., Zeldin, D.C., and Goldstein, J.A.: CYP2C44, A new murine CYP2C that metabolizes arachidonic acid to unique stereospecific products. J. Pharmacol. Exper. Ther. 310: 845-854, 2004. [Abstract]

Regulation of the CYP2Cs

  1. Ferguson, S.S., E.L. LeCluyse, Negishi, M., and Goldstein, J.A.: Regulation of human CYP2C9 by constitutive androstane receptor (CAR): discovery of a new distal binding site. Mol. Pharmacol. 62: 737-746, 2002. [Abstract]
  2. Jackson, J.P., Ferguson, S.S., Moore, R., Negishi, M., and Goldstein, J.A.: The constitutive active/androstane receptor regulates phenytoin induction of Cyp2c29. Mol. Pharmacol. 65:1397-404, 2004. [Abstract]
  3. Chen, Y., Ferguson, S., Negishi, M., Goldstein, J.A.: Identification of constitutive androstane receptor and glucocorticoid receptor sites in the CYP2C19 promoter differences in transcriptional regulation of CYP2C9 and CYP2C19. Mol. Pharmacol. 64: 316-324, 2003. [Abstract]
  4. Chen, Y., Ferguson, Stephen, S.S., Negishi, M.., and Goldstein, J.A.: Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol. Exper. Ther. 308:495-501, 2004. [Abstract]
  5. Chen, Y., Kissling,G., Negishi,M.,and Goldstein, J.A.: The nuclear receptors CAR and PXR cross talk with HNF4? to synergistically the human CYP2C9 promoter. J. Pharmacol Exp. Ther. 314:1125-33, 2005. [Abstract]
  6. Ferguson, S., Chen, Y., LeCluyse, E., Negishi, M., and Goldstein, J.A.: Human CYP2C8 is transcriptionally regulated by the nuclear receptors CAR, PXR, GR and HNF4alpha. Mol. Pharmacol. 72: 737-746, 2005. [Abstract]
  7. Jackson, J.P., Ferguson, S.S., Negishi, M. and Goldstein, J.A.: Phenytoin induction of the CYP2C37 gene is mediated by the constitutive androstane receptor. Drug Metab. Disp. 34(12):2003-10, 2006. [Abstract]
  8. Surapureddi, S., Rana, R., Reddy, J.K., and Goldstein, J.A.: The coactivator NCOA6 mediates the synergistic activation of human cytochrome P-450 2C9 by the constitutive androstane receptor and hepatic nuclear factor-4alpha. Mol. Pharmacol. 74(3):913-23, 2008. [Abstract]
  9. Chen, Y., Coulter, S., Jetten, A.M., and Goldstein, J.A.: Identification of human CYP2C8 as a retinoid-related orphan nuclear receptor target gene. J Pharmacol. Exper. Ther. 329(1):192-201, 2009. [Abstract]
  10. Chen, Y., and Goldstein, J.A.: The transcriptional regulation of human CYP2C genes. Current drug metabolism 10(6):567-578, 2009. [Abstract]
  11. Rana, R., Chen, Y., Ferguson, S., Surapureddi, S., and Goldstein, J.A.: Hepatocyte nuclear factor 4{alpha} regulates rifampicin-mediated induction of CYP2C genes in primary cultures of human hepatocytes. Drug metabolism and disposition 38(4):591-599, 2010. [Abstract]
  12. Konno, Y., Kamino, H., Moore, R., Lih, F., Tomer, K.B., Zeldin, D.C., Goldstein, J.A., and Negishi, M.: The nuclear receptors constitutive active/androstane receptor and pregnane x receptor activate the Cyp2c55 gene in mouse liver. Drug Metabolism and Disposition 38(7):1177-1182, 2010. [Abstract]
  13. Surapureddi, S., Rana, R., and Goldstein, J.A.: NCOA6 differentially regulates the expression of the CYP2C9 and CYP3A4 genes. Pharmacological research 63(5):405-413, 2011. [Abstract]
  14. Ananthanarayanan, M., Li, Y., Surapureddi, S., Balasubramaniyan, N., Ahn, J., Goldstein, J.A., and Suchy, S.J. Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical forNR activation of bile acid transporter genes and is downregulated in cholestasis. American journal of physiology. Gastrointestinal and liver physiology 300(5):G771-81, 2011. [Abstract]
  15. Rana, R., Surapureddi, S., Kam, W., Ferguson, S., Goldstein, J.A.: Med25 Is Required for RNA Polymerase II Recruitment to Specific Promoters, Thus Regulating Xenobiotic and Lipid Metabolism in Human Liver. Molecular and cellular biology 31(3):466-481, 2011. [Abstract]
  16. Kodama, S., Hosseinpour, F., Goldstein, J.A., Negishi, M. Liganded pregnane X receptor represses the human sulfotransferase SULT1E1 promoter through disrupting its chromatin structure. Nucleic Acids Research 39(19):8392-8403, 2011. [Abstract]
  17. Zhang S.Y., Surapureddi S., Coulter S., Ferguson S.S., Goldstein J.A. Human CYP2C8 is post-translationally regulated by microRNAs 103 and 107 in human liver. Molecular pharmacology 82(3):529-40, 2012. [Abstract]
  18. Rana, R., Coulter, S., Kinyamu, H., Goldstein, J.A. RBCK1, an E3 ubiquitin ligase, interacts with an ubiquinates the human pregnane X receptor. Drug. Metab. Dispos. 41(2):398-405, 2013. [Abstract]
  19. Shi Z, Yang W , Goldstein JA , Zhang SY. Med25 is required for estrogen receptor alpha (ERα)-mediated regulation of human CYP2C9 expression. Biochemical pharmacology 2014 90(4):425-431. [Abstract]
  20. Makia N, Goldstein JA. CYP2C8 Is a Novel Target of Peroxisome Proliferator-Activated Receptor α in Human Liver. Molecular pharmacology 2016 89(1):154-164. [Abstract]