The science and politics of Promoting Physical Activity in urban spaces

Cross-Cultural Perspectives on Urban Sustainability and Health: Smart Solutions for Smart Cities in India

NIEHS Global Environmental Health Program
Webinar, 30th September 2019

Dr. Anand Krishnan
Professor, Centre for Community Medicine, AIIMS, ND
What affects our decision to Walk?

• Major Factors
 • Availability of Walking spaces (Density domain)
 • Accessibility of Walking spaces (Safety Domain)
 • Awareness of need for PA (Knowledge domain)
 • Affordability (Time) for doing PA (Economic domain)

• Physical Environment
 • **Pavement:** Width and height of Pavement, Obstructions, Continuity, Integration with other levels
 • **Parks** – Cleanliness, Safety, **Air-pollution**
Walkability Score – An environmental assessment tool

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sub-domain</th>
<th>Variable</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street</td>
<td>Foot path</td>
<td>Presence</td>
<td>Absent</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type</td>
<td>Mud</td>
<td>Bricked</td>
<td>Tiled/cemented</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status</td>
<td>Discontinuous</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obstructions</td>
<td>Complete</td>
<td>Partial</td>
<td>Absent</td>
</tr>
<tr>
<td>Street lights</td>
<td></td>
<td>Presence</td>
<td>Absent</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nature</td>
<td>Discontinuous</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition</td>
<td>Majority not working</td>
<td>Majority working</td>
<td></td>
</tr>
<tr>
<td>Zebra crossing</td>
<td></td>
<td></td>
<td>Absent</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td>Fast running vehicles</td>
<td></td>
<td>Garbage disposal</td>
<td>Disposed openly everywhere</td>
<td>Disposed in a restricted area</td>
<td>Disposed in dustbins/No open disposal</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td>Bus stop</td>
<td>> 1km</td>
<td>< 1km</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auto stop</td>
<td>> 1km</td>
<td>< 1km</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other transport</td>
<td>> 1km</td>
<td>< 1km</td>
<td></td>
</tr>
<tr>
<td>Access to Facility</td>
<td>School</td>
<td>Outside the community</td>
<td></td>
<td>Within the community</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General store</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recreational centers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gym</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Play ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neighborhood environment Audit of Ballabgarh

• **Community Audit:** A process of direct observation in which the researcher directly goes into the community to measure its various attributes.

• 10 colonies in Ballabgarh (Haryana) were studied.

• Key results:
 - Density of PA sites – 6.9 per square kilometer
 - Median (95% CI) community walkability score: 9.8 (7.5-10.5)
 - Proportion physically inactive: 56%
 - Proportion indulging in leisure time physical activity: 28%
 - Mean Hours spent in recreation-related physical activities/ week (mean) 1.3 (1.0-1.7)
Community Audit - Indore

- 90 clusters from 30 randomly chosen wards from Indore (Madhya Pradesh)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Indicator</th>
<th>Indore (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighborhood Environment</td>
<td>Median Number of parks per colony</td>
<td>1 (0-1)</td>
</tr>
<tr>
<td></td>
<td>Median Community walkability Score</td>
<td>8.5 (8-10)</td>
</tr>
<tr>
<td>Physical Activity</td>
<td>Proportion physically inactive (%)</td>
<td>24 (22-26)</td>
</tr>
<tr>
<td></td>
<td>Hours spent in travel-related physical activities/week (mean)</td>
<td>5 (4-6)</td>
</tr>
<tr>
<td></td>
<td>Hours spent in recreation-related physical activities/ week (mean)</td>
<td><1 (0-0)</td>
</tr>
<tr>
<td>Overweight</td>
<td>Body mass index (Kg/M2) (mean)</td>
<td>26 (26-26)</td>
</tr>
<tr>
<td></td>
<td>Overweight or obese (WHO cut-off) (%)</td>
<td>54 (50–59)</td>
</tr>
</tbody>
</table>
Quality of Parks in Indore

Of the 67 PA sites, 77% had free access, 37% were restricted for use by children.

![Bar chart showing various amenities at green sites and their percentages](chart1.png)

Of the 67 PA sites, 77% had free access, 37% were restricted for use by children.

Various Amenities at the green sites (n=67)

- Free Space: 91%
- Benches: 88%
- Garbage bins: 78%
- Street Lights: 83%
- Open Gymnasium: 36%
- Walking Track: 68%

Proportion of parks with litter or security hazards (n=67)

- Garbage: 22%
- Dung/faeces: 13%
- Broken Glass: 8%
- Liquor Bottles: 3%
- Drug paraphernalia: 18%
- Open/Drain manhole: 13%
- Gamblers: 6%
- Drunkards: 24%
- Stray Animals: 12%
- Absence of Security: 49%
The Chennai Urban Population Study [CUPS] Physical activity using a validated tool was collected among 479 individuals at baseline (1998) in Asiad colony and among 705 people after seven years (2004)

Intervention: Education regarding the benefits of physical activity provided by mass awareness programs like public lectures and video clippings. In response to the awareness programs, the colony residents constructed a public park with their own funds.

RESULTS: The number of subjects who walked more than three times a week increased from 13.8% at baseline to 52.1% during follow-up \([p < 0.001]\).

CONCLUSION: This study is a demonstration of how community empowerment can lead to increased physical activity.

Delhi Experience : Bus Rapid Transit (BRT) Corridor

• An open BRT system from Ambedkar Nagar to Moolchand flyover (5.8 km.) since April 2008.

• Traffic segregated into bus lanes (PT), motorized vehicle (MV) lanes and Non-motorized transport (NMT; cycles and pedestrians)

• Integrated Automatic Signaling system minimizes conflicts.

• Cyclists move on 2.5 m wide segregated outer lanes on both the sides of the corridor. Features to reduce vehicular and ensure safety included.

• Continuous & wide footpaths provided on both sides of the road to support existing pedestrian flows.
Impact of BRT Corridor in Delhi

<table>
<thead>
<tr>
<th>Domain</th>
<th>Indicator</th>
<th>Non-Motorized Transport</th>
<th>Public Transport</th>
<th>Personal Motor Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Average speed of vehicle (kmph)</td>
<td>Mixed Traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walk - 4 Cycle - 8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BRT</td>
<td>Walk - 4 Cycle - 12</td>
<td>17</td>
</tr>
<tr>
<td>Time</td>
<td>Total time saved (%) if travel the entire stretch</td>
<td>Vehicle users</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500</td>
<td>12369</td>
<td>11790</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean time saved per user* N of users</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>Safety</td>
<td>Probability of meeting a fatal accident per 100,000 total users of the system/mode</td>
<td>Pre-BRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.095</td>
<td>0.000</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post BRT</td>
<td>0.002</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Fate of BRT in Delhi and rest of India

• Delhi BRT was disbanded in 2016 being branded as a “FAILURE”.

• Major reasons
 • Motorists in Delhi wealthier than bus passengers/ cyclists and walkers.
 • “Too little, Too Late”-
 • Poor implementation – covered a short stretch, traffic management of feeder roads were not planned appropriately.
 • Carving out bus lanes from existing overcrowded 3 lane roads, with leftmost lane used by hawker/parking/stuck trucks.

• Other Cities adopting the BRT concept
 • Ahmedabad (Janmarg system 45 km long). Surat and Indore are building complete systems as well, and Pune-Pimpri-Chinchwad, Naya Raipur, Hubli-Dharwad, and Bangalore, among others, are planning full systems.
Smart Cities Mission, India: opportunity not to be missed

- Centre will invest 14 million US$ for each of five years in 100 cities across the country

- Transport Features include
 - Creating walkable/cyclable localities – reduce congestion, air pollution.
 - Preserving & developing parks, playgrounds, and recreational spaces to enhance quality of life, reduce urban heat effects
 - Transit Oriented Development (TOD), public transport and last mile connectivity

Cities will strive towards attaining specified benchmarks in the services, including:

- Transport
- Building Planning
- Water Supply
- Solid Waste Management
- Sewerage and Sanitation
- Wi-Fi Connectivity
- Health Care Facilities
- Electricity
- Education
Air-Pollution – a new consideration in urban transport decisions

• Move towards improved public transport and clean vehicles/fuels
Conclusions

• Urban Environment including green spaces, public transport is key to promote physical activity of the population.

• We need to improve Science of measurement of urban environment
 • Multi-faceted measurements - Develop appropriate indicators, tools using GIS
 • Setting Norms for Built or neighborhood environment

• Evaluation of population level interventions are challenging
 • Academics must respond better to it and develop evaluation frameworks
 • Improve the communication of science to community

• Engaging with Community & Policy makers
 • Community Empowerment is essential for success of any such program.
 • How can we engage with politics of it more meaningfully?