Global Safety and Health Issues and their Impact on Worker Training

Paul A. Schulte, Ph.D.
Centers for Disease Control and Prevention
National Institute for Occupational Safety and Health

The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy.
Globalization: Process of growing interdependence of all people on the planet

Linked together by trade, investments, information, media, and governance
Worker Training

- Globally Harmonized System (GHS)
- WHO/ILO/IPCS
- Nanotechnology
- Green Movement
- Global Climate Change
- Prevention through Design (PtD)
- Control banding
- REACH
- HazCom

Nanotechnology

Global Climate Change

Prevention through Design (PtD)

Control banding

REACH

HazCom

Globally Harmonized System (GHS)

WHO/ILO/IPCS

Nanotechnology

Green Movement
NIOSH Strategic Goal 3

Enhance global workplace safety and health through international collaborations

- Take a leadership role in developing a global network of occupational health centers.
- Investigate alternative approaches to workplace illness and injury reduction and provide technical assistance to put solutions in place.
- Build global professional capacity to address workplace hazards through training, information sharing and research experience.
UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

- Single globally harmonized system
- To address classification, labels and MSDS
 - 1992 – work began
 - 2002 – first edition
 - 2005 – revised first edition
GHS Pictograms and Hazard Classes

- Oxidizers
- Flammables
- Explosives
- Acute toxicity (severe)
- Corrosives
- Gases Under Pressure
- Carcinogen
- Respiratory Sensitizer
- Environmental Toxicity
- Irritant
- Dermal Sensitizer
- Acute toxicity (harmful)
- Narcotic Effects
- Reproductive Toxicity
- Target Organ Toxicity
- Environmental Toxicity
- Mutagenicity
- Reproductive Toxicity
- Aspiration Toxicity
- Narcotic Effects
- Respiratory Tract
- Aspiration Toxicity
- Irritation
- Environmental Toxicity
- Mutagenicity
- Aspiration Toxicity
Hazard Communication Standard

OSHA proposing to modify HazCom to conform with GHS

- Revised criteria for classification of chemical hazards (pictograms, hazard statements, labeling)
- A specified format for safety data sheets
- Requirements for employee training on labeling and safety data sheets
REACH

Legislation issued in 2007 by European Commission

- **Registration, Evaluation, Authorization and Restriction of Chemicals**
- Puts responsibility of assuring safety of chemicals on industry
- Based on principle: no data—no market
- Amount of effort-function of tonnage
 - Threshold: 1 metric ton/yr
 - Acute toxicity
 - In vitro skin and eye irritation
 - Mutagenicity (Ames test)
 - More extensive testing at 10, 100, and 1,000 ton levels
Change that may be most confusing to workers will be “new exposure limits”

- Derived no effect levels (DNELs)
- Level above which humans should not be exposed
- >10 tons requires calculation of DNEL
- Potential for more than 20 DNELs based on combination of
 - Target population
 - Routes of exposure
 - Duration of exposure
 - Whether effect is local or systemic
- The “worker-inhalation-chronic-systemic” combination most similar to traditional OEL
Control Banding

- Majority of substances - No Occupational Exposure Limit (OEL)
- Many small businesses lack expertise and money to measure exposures and implement controls
- Control banding
 - Grouping chemical exposures:
 - According to similar chemical and physical characteristics
 - Intended process handling
 - Anticipate exposure scenarios
- Derived from: U.S. pharmaceutical industry
- British HSE work began in 1990s
Qualitative Risk Characterization and Management of Occupational Hazards: Control Banding (CB)

Scope: a literature review and critical analysis of the state-of-the-art, validation, and effectiveness of control banding
Prevention through Design (PtD)
Mission: To prevent occupational injuries, illnesses, and fatalities through the inclusion of prevention principles in all designs that impact workers.
Incorporates Hierarchy of Controls

- **Elimination**: Eliminate the hazard during design or re-design.
- **Substitution**: Substitution of less hazardous materials, processes, operations, or equipment.
- **Engineering Controls**: “Design-in” engineering controls to minimize risk.
- **Warnings**: Automatic and manual warning systems; signs and labels.
- **Administrative Controls**: Training, well-designed work methods & organization.
- **PPE**: Available, effective, easy to use.
Prevention through Design (PtD)

Driven by global issues

- Large burden of occupational disease and injury
- Need to be competitive
- Practices in other countries
 - UK
 - Australia
 - Europe
- Growth of ergonomics
- Sustainability/Green
A National initiative on PtD has been inaugurated by NIOSH and a group of collaborating organizations:

- American Industrial Hygiene Association
- American Society of Safety Engineers
- Association of Equipment Manufacturers
- The Center for Construction Research and Training (CPWR)
- Kaiser Permanente
- Liberty Mutual
- National Safety Council
- Occupational Safety and Health Administration
- ORC WorldWide™
- Regenstrief Center for Healthcare Engineering
Prevention through Design National Initiative

Stakeholder input
- Agriculture, Forestry and Fishing
- Mining
- Construction
- Manufacturing
- Wholesale and Retail Trade
- Transportation, Warehousing and Utilities
- Services
- Healthcare and Social Assistance

Strategic planning
- Research
- Education
- Practice
- Policy

Implementation
- Incorporate occupational safety and health considerations in designs

Performance and Sustainability
- GOAL
 Prevent or reduce occupational injuries, illness, and fatalities

Time Line
- 2007
- 2008
- 2011
- 2014
Prevent or reduce occupational injuries, illnesses, and fatalities

Factors Influencing Goals Development

Education
- Develop/disseminate education programs
- Expand education reach
- PtD in textbooks
- Expand curricula
- Include PtD in licensure and certification exams
- PtD consensus standard
- Add PtD to existing standards, regulations and guidelines
- Gov. agencies adopt PtD
- Define PtD vision and outcomes
- Include PtD in sustainable design and construction practices

Practice
- Share successful practices
- Identify PtD tools/equipment
- Demonstrate business value
- Share successful processes
- Integrate PtD into org. behavior
- Improve surveillance
- Investigate PtD ROI
- Investigations identify design-related factors
- Investigate motivators and barriers
- Investigate effective designs
- Expand incident investigation
- Increase worker involvement
- Build PtD into existing systems

Policy

Research

Prevent or reduce occupational injuries, illnesses, and fatalities
Potential Climate-Related Occupational Hazards

- Increased ambient temperatures
- Air pollution
- Ultraviolet exposure
- Extreme weather
- Vector-borne diseases/expanded habitats
- Industrial transitions/emerging industries
- Changes in the built environment

(Schulte and Chun, 2009)
Potential Climate Change Impacts

Climate change effects, if they occur, are likely to…

- Increase prevalence, distribution and severity of known hazards
- Result in increased incidence of morbidity, mortality, and injury

No evidence of unique of previously unknown hazards

- *But…*the possibility should not be excluded because of potential for interaction of known hazards and new conditions leading to new hazards
Impact on OS&H Research and Practice

- Need research linking climate and occupational disease
- Identify workers potentially affected
- *Based on findings, develop*
 - New hazard controls/guidance
 - Occupational exposure limits
 - Hazard and risk communication, and training
 - Expanded surveillance
- Modify risk assessment methods
- Develop leading indicators of climate potentiated effects
- Collaborate with environmental scientists/ "green movement"
- Integrate worker health and safety into sustainability
 - *Going Green*: Safe and Healthy Jobs
Green Jobs/Chemistry/Sustainability

Planetary warming
Energy limitations

Design to limit impacts
Green jobs movement

What is green is not necessarily worker safe
Going Green: Safe and Healthy Jobs

Sustainability must include worker safety and green jobs must be safe jobs

- Enhance the safety and health protection of the American workforce
- Expand and apply our knowledge in occupational safety and health to new workplaces, processes, and products
- Ensure the training and re-training of the workforce that will fill these new jobs includes relevant safety and health information

Making Green Jobs Safe Workshop
December 14 – 16, 2009
Green Jobs Emphasis Areas

1. Construction / Infrastructure / Re-Purposing
 – Buildings, bridges, roads, weatherization projects

2. Manufacturing and Emerging Technologies
 – Green chemistry, green nanotechnology, green products

3. Transportation
 – Rail, car, truck, air, battery and solar-powered

4. Agriculture, Forestry, Fishing, including food and food processing
 – New hazards, equipment, and chemicals linked to green practices, alternative fuels

5. Energy and Mining
 – Smart grid, wind farms, solar power, biofuels, alternative energy

6. Waste Management and Recycling
Green Jobs Occupational Hazards

- Determine the extent to which old hazards will be manifest in green jobs
- Determine how to adapt old guidance to new jobs
- Be alert for sentinel events
- Consider leading indicators

<table>
<thead>
<tr>
<th>What we know</th>
<th>What we know we don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Utilize the body of knowledge from safety, industrial hygiene and occupational medicine</td>
<td>- Develop research agenda and planning</td>
</tr>
<tr>
<td>- Identify where old hazards are not being addressed adequately.</td>
<td>- Conduct ongoing assessment of guidance and regulations</td>
</tr>
</tbody>
</table>

How do we (quickly) support research, disseminate results and transfer it into practice?

<table>
<thead>
<tr>
<th>What we don’t know we know</th>
<th>What we don’t know we don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Determine the extent to which old hazards will be manifest in green jobs</td>
<td>- Be alert for sentinel events</td>
</tr>
<tr>
<td>- Determine how to adapt old guidance to new jobs</td>
<td>- Consider leading indicators</td>
</tr>
</tbody>
</table>

How do we identify and apply “old” knowledge to these new jobs?
Nanotechnology

- Understanding phenomena of materials at the nanoscale (1-100 nm) will impact all sectors
- Nanoscale particles may be more toxic than larger ones
- Current exposure limits for substance may not be appropriate for their nanoscale variants
- Work practices and engineering controls are crucial for worker safety
- Nanotechnology is a global effort
Increasing & Coalescing Evidence from Animal Studies of Engineered Nanomaterials

- Studies of experimental animals show cancer, pulmonary fibrosis, cardiovascular effects
- Consistent patterns of toxic effects related to oxidative stress
- Effects seen after relatively short exposure and low doses
- Variability due to contaminants and physicochemical parameters
Critical issues

- What metrics to use
- What are current exposures
- Where are the workers
- What occupational health surveillance is warranted
Estimated number of workers actually exposed to engineered nanoparticles.
Steps to Protect Workers from Hazards of an Emerging Technology

- Anticipate & identify potential hazards
- Take precautions
- Assess effectiveness of precautions
- Clarify knowledge of hazards
- Determine risks
- Clarify risk management practices
- Establish standard risk management practices
- Continually evaluate evidence & approaches

Epidemiologic research
Occupational health surveillance
Establish exposure registries
World Health Organization/International Labour Organization/International Programme for Chemical Safety

67 WHO network of collaborating centers

- Develop national action plans on worker health
 - Silica, asbestos, HBV
- Develop practical tool kits for worker health protection and health promotion
- Improve performance of OHS Services
- Encourage research on nanotechnology and climate change
- Incorporate worker health into non-health policies and product
 - Economic benefits to worker health
 - Guidance to banks
 - High-risk and vulnerable population
- IPCS Chemical Safety Cards