Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Workshop on Developing a Data Science Competent EHS Workforce

August 14 – 15, 2018
NIEHS

Background and Scientific Need

Meeting Documents

With rapidly developing technology and more efficient data collection procedures, environmental health scientists are now collecting vast amounts of data. These data sets, termed "Big Data", can be large, complex, multidimensional, diverse, and are often generated using new technologies. They are associated with basic, translational, clinical, social, behavioral, environmental, or informatics research questions. Such data types may include imaging, phenotypic, genotypic, molecular, clinical, behavioral, environmental, and many other types of biological and biomedical data. Data science has emerged from its roots in applied statistics, analytics, and bioinformatics as a new area of research to meet the challenges in sharing, accessing, analyzing, and interpreting big data. "Data science", defined as the extraction of useful knowledge directly from data through a process of discovery, or of hypothesis formulation and hypothesis testing, refers to the management and execution of the end-to end data processes.

National Institutes of Health (NIH) has made early efforts to address the gap between the needed and existing biomedical data science skills through investments in training and education as part of the Big Data to Knowledge (BD2K) Initiative. The programs and Funding Opportunity Announcements released had two main, and somewhat separable, goals: 1) improving big data skills of biomedical scientists; and 2) increasing the number biomedical data scientists. These NIH-wide efforts were not domain-specific and were intended to develop resources which could benefit all NIH institutes.

This workshop brought together experts from relevant research disciplines to examine existing data science and environmental health science (EHS) resources (trainee pipelines, mentors, research), identify how these resources can address EHS-specific training goals in data science, and make recommendations for National Institute of Environmental Health Sciences (NIEHS) in data science training.

Workshop Objective and Framework

The overarching goal of the workshop was to develop an overall strategy to build a data science competent EHS workforce. The workshop was organized into three major sessions. The first session was designed to understand the current state of data science in the EHS domain as it relates to training, and through the evaluation of representative scientific 'use cases' (nominated by The Division of Extramural Research and Training (DERT) program branches), current limitations for data science training in EHS will be identified. The second session examined existing training resources relevant to the intersection of EHS and data science and will relate EHS training goals to the accomplishments of BD2K. The final session formulated how to build EHS training in data science and will be a discussion with participant input into questions formulated before the workshop and during the planning.

Questions

Jennifer Collins
Jennifer B. Collins
Health Specialist
Tel 984-287-3247
collins6@niehs.nih.gov
530 Davis Dr
530 Davis Drive (Keystone Bldg)
Durham, NC 27713

Back
to Top