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Overall Laboratory Research Goals

• To understand the molecular mechanisms
by which bacteria transform metals.

• To understand the factors controlling the
cycling of metals in the environment.

• To understand the effect of toxic metals on
microbial communities and their activities.



Mechanisms for the Natural Attenuation 
of Metal Pollution

• Volatilization 
• Sorption
• Precipitation
• Redox transformations



The Processes

• Manganese(II) oxidation
Mn2+  → Mn(III,IV) oxides (solids)

– Sequestration of toxic metals 
(e.g., Pb, Zn, Cd, Cu, Co)

• Chromium(VI) reduction
Cr(VI) → Cr(III) (less soluble)

– Hexavalent Cr detoxification



Research Objectives

• To identify and characterize the genes and 
proteins involved in Mn(II) oxidation and Cr(VI) 
reduction 

• To understand the underlying molecular 
mechanisms of these redox transformations

• To understand how these processes are regulated 
by environmental cues 

• To evaluate the potential of these processes for 
bioremediation applications



Question
•How do bacteria oxidize
Mn (II)?

•Can we exploit Mn(II)
oxidation for metal
bioremediation?

Manganese Oxide-Coat
Sediments 

Bacterial Mn(II) Oxidation

Mn(II)-Oxidizing Bacteria
•Ubiquitous in soils,
sediments & natural
waters.

•Phylogenetically diverse
•Primary source of reactive
Mn oxides found in nature.

•Require O2

Biogenic Mn Oxides
•Reactive!
•Sorb metals
•Oxidize organic
compounds

Major players in the 
biogeochemical cycling 
of metals and carbon

Layer and tunnel structures

ed Creek 



Marine Bacillus sp. strain SG-1

• Spores, not vegetative cells, 
oxidize Mn(II)

• Mn(II)-oxidizing spores are 
ubiquitous

• Increase the rate of Mn(II) 
oxidation by 4-5 orders of 
magnitude

• Active over a wide range of 
conditions
– [Mn(II)] (<nM to >mM)
– Temperature (2-55°C)
– pH ≥ (  6.5)
– Osmotic strength



Mnx Genes Involved in Mn(II) Oxidation in Bacillus sp. 
Strain SG-1

SG-1 A   B       C         D    E   F G

Van Waasbergen et al. 1996 putative Cu binding regions

• Transposon mutagenesis identified a region with 7 ORFs that 
is required for Mn-oxidation activity.

• mnxG has copper binding signatures of a multicopper oxidase; 
5 Cu binding regions predicted, with a 6th in mnxF

• addition of copper enhances Mn(II) oxidation
• Direct link between mnxG and active Mn(II)-oxidizing enzyme 

has never been made.
• Multicopper oxidases involved in Mn oxidation have also been 

found in Pseudomonas and Leptothrix spp.



Multicopper oxidases
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Many diverse Mn(II)-oxidizing Bacillus spores 
have been identified (Francis & Tebo, 2002)

• An internal region of mnxG
(900bp) can be PCR-amplified 
from Mn(II)-oxidizing spores but 
not from non-oxidizers

• The apparent size of the Mn(II)-
oxidizing enzymes varies

• Bacillus sp. strain PL-12 has a 
smaller Mn(II) oxidase 
– more amenable to purification or 

heterologous expression

SG-1

Coom  Mn

100-kDa

PL-12

Coom Mn

205-kDa
Mn oxidizing 

enzyme



Approaches

• Direct identification (mass spectrometry of the 
active protein bands after polyacrylamide gel 
electrophoresis)

• Standard protein purification and characterization 
(chromatography, kinetic studies, etc.)

• Cloning and expression



What are the molecular mechanisms of 
Mn(II) oxidation by bacteria?

• How does the enzyme catalyze 
electron transfer and Mn oxide 
formation?

• Is Mn(III) an intermediate?
– Solid phase? (e.g., Mn3O4, MnOOH)
– Enzyme bound?



Possible Mechanisms of Bacterial Mn(II) Oxidation

Mn(II)

Mn(III)

Mn(IV)

Enz
Mn2+

Mn3O4
MnOOH

MnO2

Solid Phase IntermediateSolid Phase Intermediate

Ruled out by X-ray 
Absorption 

Spectroscopy

EnzymeEnzyme--bound Intermediatebound Intermediate

Mn(IV)=Enz

O2

(1)

MnO2

Mn(III)(aq)

(2)

Mn(II)+MnO2

Mn(II)+Enz

Mn(II)=Enz
O2

Mn(III)=Enz

(3)



The exosporium, the outermost layer covering the 
spores, contains the “Mn oxidase” 

French
Press Centrifugal

separation



Mn(III) Trapping Experiments

• Exosporium from SG-1 (pH 7.5) 
• Monitor UV-Vis absorbance in situ 

while biogenic oxides are produced
– Presence and absence of 

pyrophosphate (PP)
• Forms a colored complex with Mn(III) 

at 258 & 480 nm 
– Monitor absorbance at 5 min intervals
– Correct for Mn oxide particles

• Experimental Parameters 
– Varied initial Mn (10µM, 50µM, 

100µM)
– Inhibitors (KCN, NaN3)
– No O2

– mnxG– mutants

Exo + Mn(II) = δ-MnO2
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Mn(III)-PP is produced from Mn(II)

• Production rates occur faster than controls with PP, 
Mn(II), and synthetic or biogenic oxides
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Mn(III)-PP disappears with time!

• Mn(III)-PP is stable over this time period
• Indicates an enzymatic pathway from

Mn(III) → Mn(IV)
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The exosporium oxidizes Mn(III)-PP

• Rate of Mn(III) 
decay in Mn(II) 
incubations is 
similar to that of 
Mn(III)+Exo
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A mnxG– mutant is unable to oxidize 
Mn(II) → Mn(III)
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A mnxG– mutant is also unable to oxidize 
Mn(III) → Mn(IV)
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Novel Aspects of the Mn(II)-oxidizing 
Multicopper Oxidase

• Overall:  2 e– oxidation of the substrate: 
Mn(II) → Mn(III) → Mn(IV)
– Other MCOs only oxidize their substrate by 1 e–

– Both steps require MnxG
• Molecular oxygen from O2 is incorporated into the 

Mn oxide mineral (18O-labelling studies with whole 
spores)   [Mandernack, Fogel & Tebo, 1995]
– Is the enzyme also an oxygenase?

+O=O

Mn(II)+Enz Mn(II)=Enz Mn(III)=Enz Mn(IV)=Enz

MnOO



Environmental implications

• Mn(III) is a strong oxidant
– Mn(III) is involved in lignin (and xenobiotic) 

degradation by fungi
– Generation of free radicals

• Cometabolic biotransformations
• Mn oxidation provides several pathways for 

transformation/sequestration of metal and organic 
contaminants



Chromium Chemistry
• Hexavalent Cr  ↔ Trivalent Cr
• Cr(VI)

– Oxyanion (CrO 2-
4 )

– Soluble, conservative behavior
– Highly toxic

• Can be transported across the membrane
• Cr(VI) is reduced to Cr(III) which binds to 

proteins and nucleic acids
• Cr(III)

– Cr(OH) or Cr(OH)2+
3

– Less soluble or particle reactive
– Relatively nontoxic

• Not transported across the membrane



Uses of Chromium

• Metal-finishing industry/alloy construction
• Leather tanning
• Ink, dye, and pigment manufacturing
• Boat paints
• Wood preservative



Mechanisms of Cr(VI) Reduction



Shewanella species

• S. oneidensis MR-1 and 
Shewanella sp. MR-4

• Great metabolic versatility-
can use >12 electron 
acceptors: including O2, NO3

-, 
NO2

-, fumarate, DMSO, 
TMAO, Fe(III), Mn(IV), 
U(VI), Cr(VI), Co(III)

• Genome sequence complete; 
microarrays available

• Important for immobilization 
of chromium as Cr(III) in 
contaminated aquifers

Shewanella sp. MR-4

0.5 µm



Studies of the Mechanisms of Metal Reduction

Cells grown on different electron 
acceptors ±Cr(VI) 

Harvest cells
Fixation

Transmission Electron 
Microscopy (TEM)  & 
Electron Energy Loss 
Spectroscopy (EELS)

Localization of 
metal reduction

RNA

Microarrays

Identify genes turned on 
in the presence but not 

absence of Cr(VI) 

Protein

1-D & 2-D Gel Electrophoresis
FPLC Protein Purification

Identify proteins 
expressed (or repressed) 

when grown in the 
presence and 

characterization of 
Cr(VI) reductases



Aerobic Cr(VI) Reduction:  Tris increases amount 
of Cr(VI) reduced
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Reduced Cr(III) is soluble in Tris media
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Complexing agents enhance Cr(VI) reduction by MR-4

bicarbonate

•

•

•

•
•

R2 = 0.9963
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Precipitate formation in and around cells in Hepes
0.5 µm

0.5 µm

0.5 µm



Reduced Cr accumulates intracellularly

• Energy Electron Loss 
Spectroscopy (EELS) was used 
to create an elemental map of 
Cr (red) overlaid on a zero 
energy loss filtered image of an 
MR-1 cell stained with Pb.

• Cr precipitates both 
intracellular and extracellularly

• Collaboration with Mark Ellisman
and Mason Mackey

25 nm



No Cr precipitate in Tris

0.5 µm
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complexation reduces cell viability 

• Cr(VI) reduction can be enhanced by the addition of 
complexing agents Scale bars= 0.5p M 



Nitrate-grown MR-1

Cr(VI)
added

RNA
RNA

cDNA hybridizes to 
complementary 
sequences in spots

cDNA labeled
w/ Cy5 (red)cDNA labeled 

w/ Cy3 (green)

Whole genome 
DNA Microarray

No e-
acceptor

Wash and concentrate

Microarray experiments

• green, red, yellow spots
• normalization 
• cutoff= 3-fold upregulation



Distribution of upregulated genes (≥ 3 fold)
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Genes upregulated in response to Cr(VI)
Microarray Confirmation bySO# Annotation results RT RT-PCR

970 fumarate reductase flavoprotein subunit 4.0 √

1274 hypothetical protein 3.7 √

1427 decaheme cytochrome c
1428 outer membrane protein 2.0
1429 anaerobic dimethyl sulfoxide reductase (dmsA) 2.3 √
1430 anaerobic dimethyl sulfoxide reductase (dmsB) 4.1
1431 hypothetical protein

1776 outer membrane protein precursor MtrB (mtrB) 5.5 √
1777 decaheme cytochrome c MtrA (mtrA) 4.5 √
1778 decaheme cytochrome c (omcB) or (mtrC) 2.6 x
1779 decaheme cytochrome c (omcA) 2.7 x

4483 cytochrome b, putative 8.8 √
4484 cytochrome c-type protein Shp 16.0 √
4485 diheme cytochrome c 11.4 √



Genes known to be involved in Fe(III) and Mn(IV) reduction
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Cr(VI) reduction by MR-1 mutants
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Several potential pathways for Cr(VI) reduction
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Implications

• If the genes up-regulated during Cr(VI) reduction 
are specific to Cr(VI), we should be able to use 
these genes as biomarkers for Cr(VI) 
bioavailability.

• Genes and proteins responsible for Cr(VI) 
reduction can have applications for 
bioremediation.
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