Integrated Evaluation of Leaching Processes for Environmental Assessment

David S. Kosson, Ph.D.*, 1
Florence Sanchez, Ph.D.*
Andrew Garrabrants, Ph.D.*
Hans A. van der Sloot, Ph.D**

NI EHS Workshop on Arsenic Leaching From Drinking Water Treatment Residues
28 February 2005

*Vanderbilt University, Nashville, TN
**Energy Research Center of the Netherlands (ECN), Petten, NL
1 e-mail: David.Kosson@Vanderbilt.edu
Comparison of Different Leaching Tests
Contaminated Soil

Contaminated soil CSO2

Leached (mg/kg)

EDTA
Hac
CaCl2
NaNO3
EN-12457-3
SCE
PrEN 14429
SCE
PrEN 14429
Total AR

Cr

Cd

pH dependence test as reference basis
A class of materials behaves consistently according to controlling chemistry.

Most relevant pH range for cement-bound materials.
Vendor 3 treatment resulted in a significant increase in Hg solubility for pH between 4 and 8.
Conceptual Approach to Leaching Evaluation
(Kosson, van der Sloot et al., 2002, Environ. Engr. Sci., 19, 159-203)

- Measure intrinsic leaching characteristics of material
- Evaluate release in the context of field scenario
 - External influencing factors such as carbonation, oxidation
 - Hydrology
 - Mineralogical changes
- Use geochemical speciation and mass transfer models to estimate release for alternative scenarios
 - Model complexity to match information needs
 - Many scenarios can be evaluated from single data set

Do NOT mimic field scenarios with specific tests!
Too many tests with limited data comparability!

Vanderbilt University
Department of Civil and Environmental Engineering

NI EHS Workshop
28 February 2005
Measuring Intrinsic Leaching Characteristics

- Aqueous-solid partitioning as a function of pH and Liquid to Solid ratio
 - Batch extractions
 - Constituent fraction readily leached
 - Controlling mechanism for release (mineral dissolution and solubility, solid phase adsorption, aqueous phase complexation)

- Release kinetics
 - Percolation (column tests)
 - Diffusion (monolithic or compacted granular tank leaching tests)
 - Use results in conjunction with understanding of pore water chemistry to determine mass transfer rate constants (e.g., effective diffusivities)
Main Types of Leaching Tests

- **Equilibrium-based leaching tests**
 - Carried out on size reduced material
 - Aim to measure contaminant release related to specific chemical conditions (pH, LS ratio)

- **Mass transfer-based leaching tests**
 - Carried out either on monolithic material or compacted granular material
 - Aim to determine contaminant release rates by accounting for both chemical and physical properties of the material

- **Percolation (column) leaching tests**
 - May be either equilibrium or mass transfer rate
Equilibrium Characterization
Solubility and Release as a Function of pH (SR002.1)

- 11 parallel solubility extractions
- DI with HNO₃ or KOH addition
- Size reduced material
- Contact time based on size
- LS ratio: 10 mL/g dry
- Endpoint pH
 - Distributed 3≤pH≤12

<table>
<thead>
<tr>
<th>Particle size</th>
<th>Contact time</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.3 mm</td>
<td>18 hr</td>
</tr>
<tr>
<td>< 2 mm</td>
<td>48 hr</td>
</tr>
<tr>
<td>< 5 mm</td>
<td>168 hr</td>
</tr>
</tbody>
</table>

Titration curve and constituent solubility or release curves
Equilibrium Characterization
Solubility and Release as a Function of LS (SR003.1)

- 5 parallel extractions
- DI water
- Size reduced material
- Contact time based on particle size
- LS ratios
 - 0.5, 1, 2, 5, and 10 mL/g dry

Estimate of constituent concentration in the pore water

<table>
<thead>
<tr>
<th>Particle size</th>
<th>Contact time</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.3 mm</td>
<td>18 hr</td>
</tr>
<tr>
<td>< 2 mm</td>
<td>48 hr</td>
</tr>
<tr>
<td>< 5 mm</td>
<td>168 hr</td>
</tr>
</tbody>
</table>
Arsenic Leaching Behavior From Soils and Solidified Wastes

- Contaminated soil
- S/S treated soil
- S/S MeO - non carbonated
- S/S MeO - carbonated

Same soil untreated & treated
Same S/S treated metal Oxide matrix with & Without exposure to Carbon dioxide (carbonation)
Carbonation and Matrix Solubility
Portland Cement Matrix

Ca

As

Cd

Pb

NI EHS Workshop
28 February 2005
Arsenic Leaching Behavior
From a Range of Construction Materials

Leached (mg/kg)

- Portland cement mortar
- Demolition debris
- Sintered brick
- Blast furnace slag cement mortar
- Drinkwater pipe

pH

NI EHS Workshop
28 February 2005
Arsenic Leaching Behavior From Treated Wood and a Few Waste Types

- CCA impregnated wood
- Cu salt impregnated wood
- Galvanic sludge
- Incinerated sewage sludge ash
- MSWI Fly ash
- MSWI bottom ash
Use of Sodium Ascorbate as a Reducing Agent (Mining Waste)

(1) Baseline, ORP = 410mV vs. NHE
(2) 0.0075 mol L\(^{-1}\), ORP = 340 vs. NHE
(3) 0.01 mol L\(^{-1}\), ORP = 345mV vs. NHE
(4) 0.025 mol L\(^{-1}\), ORP = 5mV vs. NHE
(5) 0.046 mol L\(^{-1}\), ORP = -7mV vs. NHE

Chatain and Sanchez, 2005
Use of Sodium Borohydride as a Reducing Agent (Mining Waste)

(1) Baseline, ORP = 410 mV vs. NHE
(2) 0.0075 mol L⁻¹, ORP = 140 mV vs. NHE
(3) 0.01 mol L⁻¹, ORP = 150 mV vs. NHE
(4) 0.025 mol L⁻¹, ORP = -440 mV vs. NHE
(5) 0.046 mol L⁻¹, ORP = -445 mV vs. NHE
(6) 0.075 mol L⁻¹, ORP = -500 mV vs. NHE

Chatain and Sanchez, 2005
Release Modes

- **Percolation through granular materials**
 - Granular or highly permeable material
 - Local equilibrium controls release
 - Preferential flow may be important

- **Flow around low permeability (monolithic) materials**
 - Coupled diffusion and pore-water chemistry controls release
 - Boundary conditions are important
Long-term Assessment Models

- Simple release models
 - Percolation/equilibrium model
 - Diffusion model
- More sophisticated release models to account for
 - Chemistry between solid-liquid phases (empirical or geochemical speciation)
 - Effect of intermittent wetting
 - Effect of external stresses (e.g., carbonation)
- Use of probabilistic approach to allow for
 - Consideration of a range of management sites and conditions
 - Consideration of a range of expected climate conditions and waste characteristics
 - Bounded levels of confidence and distribution frequencies for release estimates
Probabilistic Assessment of Release for Land Disposal (based on USEPA database)

Department of Civil and Environmental Engineering
NIEHS Workshop
28 February 2005
Example
Arsenic Leaching as a Function of pH

Baseline
As total content*: 80.5 ± 1.9 µg/g

w/ activated carbon injection
As total content*: 27.9 ± 2.1 µg/g
Example
Probability Distribution of 100 yr Release Estimates for Land Disposal

\[
\begin{array}{|c|c|c|c|}
\hline
\text{100-year Mt [µg/kg]} & \text{PB} & \% & \text{BPT} \\
\hline
\text{Mt min} & 0.2 & 0.0003 & 0.1 & 0.0003 \\
\text{Mt - 5\%} & 0.9 & 0.0011 & 0.1 & 0.0005 \\
\text{Mt - 50\%} & 152 & 0.2 & 22 & 0.0772 \\
\text{Mt - 95\%} & 2095 & 2.6 & 338 & 1.2 \\
\text{Mean Mt} & 468 & 0.6 & 90 & 0.3 \\
\text{Mt max} & 4693 & 5.8 & 10157 & 36.4 \\
\hline
\end{array}
\]
Hierarchy in Testing

In the context of detailed characterization of a material, use simplified testing for compliance and quality control purposes

- Establish material performance criteria for specified application
- Test material to establish
 - Performance consistent with initial characterization (new material source or significant process change?)
 - Performance consistent with management acceptance criteria
- Limit testing to critical parameters
- Establish material quality control monitoring program
Hierarchy in Testing
Characterization and Compliance Tests

Characterization

Compliance

NI EHS Workshop
28 February 2005
DIFFERENT IMPACT SCENARIOS

- Landfill
- Drinking water well
- Road base
- Contaminated soil
- Mining
- Contaminated soil
- Roof runoff
- Construction
- Drinking water pipes
- Sewer
- Agriculture
- Industrially contaminated soil

16 Dec. 2003 DG ENV
SIMILAR PROBLEM

Different for each scenario, material, changes over time (carbonation, redox), etc.

Transport in unsaturated zone and saturated zone to point of compliance similar for each scenario.
LeachXS1 as a Decision Support Tool to Manage and Interpret Test Data

1LeachXS is a software tool being jointly developed by The Netherlands Energy Research Foundation (ECN), Vanderbilt University (USA) and DHI Water and Environment (Denmark), including test methods selection, database, data presentation, evaluation, geochemical speciation modeling, and scenario assessment.
LeachXS Structure

Materials (Leaching data, Composition, Physical characteristics)

Scenarios (e.g., fill characteristics, geometry, infiltration, hydrology)

Regulatory (Regulatory thresholds and criteria from different jurisdictions)

Materials Leaching Database

Scenario Database

Regulatory Database

Thermodynamic Databases

LeachXS (Materials and Scenarios Evaluation)

Orchestra (Geochemical Speciation and Reactive Transport Simulator)

Excel Spreadsheets (Data, Figures)

Reports (Figures, Tables, Scenario and Material Descriptions)

Other Models (Source Term and Parameters for Fate, Transport, and Risk Models)
GEOCHEMICAL MODELING

pH stat test
L/S = 10, t = 48 hr

Percolation test
L/S = 0.1-10

Field leachate

Geochemical modeling

ORCHESTRA with extended MINTEQ database + Nicca Donnan

LeachXS
Modelled solid and liquid phase speciation of Pb in a contaminated river sediment

SEDNET Workshop
June 10, 2004
San Sebastian, Spain
USEPA Evaluation of Coal Combustion Residues from Facilities with Enhanced Mercury Control

- Extensive QAQC program development
 - Methods validation with mass balance on reference CCR
 - QAQC within leaching methods, chemical analysis, data evaluation

- Leaching characterization
 - Release as function of pH (SR002.1)
 - Release as function of LS (SR003.1)
 - Mass transfer release (when considered necessary)

- Comparison with field data
 - Leachate concentrations reported in USEPA database
 - Field sampling from CCR management facilities

- Release Scenario Assessment
 - Land disposal
 - Probabilistic release estimates based on range of conditions (pH, LS) reported in USEPA database (improved estimates to be based on EPRI data)
 - Release estimates for default scenarios at 3 pHs (acid, alkali, own)
Key Messages

- Measure intrinsic leaching characteristics, use geochemical speciation and mass transfer models in conjunction with management scenarios to estimate constituent release.
- Use results to assess impacts, develop acceptance criteria and monitoring strategies.
- The tools exist and data are currently being obtained to achieve assessments for specific scenarios of residue disposal. Tailoring for specific uses is needed.
- “Classes” of drinking water treatment residues likely can be
Acknowledgements

- USEPA
 Office of Solid Waste
 National Risk Management Research Laboratory (RTP)
 Northeast Hazardous Research Center

- Consortium for Risk Evaluation with Stakeholder Participation (CRESP) with support from DOE-EM

- Recycled Materials Resource Center (UNH/FHWA)

- EU Research Program
 Network Harmonization of Leaching and Extraction Tests

- Netherlands Ministry of Housing, Spatial Planning and Environment (VROM)