Rice and Rice Products as Potential Dietary Sources of Arsenic in Pregnant Women and Kids

Margaret R. Karagas
Dartmouth College
Community Engagement:
Vicki Sayarath
Carolyn Murray

Children’s Health Specialist:
John Moeschler

Project 2 (Pilot): Food Borne Exposure to Arsenic During the First Year of Life
Kathy Cottingham

Project 3 (Pilot): An Integrated Geospatial and Epidemiological Study of Associations Between Birth Defects and Arsenic Exposure in New England
Xun Shi

Project 4 (Pilot): Determining how Arsenic Modulates Hedgehog Signaling During Development
David Robbins

New Project 5: Epigenetic Markers of Exposure and Development
Carmen Marsit

Research Project 1: Arsenic and Maternal and Infant Immune Function
Margaret Karagas, Susan Korrick, Matt Davis, Shohreh Farzan

Project 1: Arsenic and Maternal and Infant Immune Function
Margaret Karagas, Susan Korrick, Matt Davis, Shohreh Farzan
Arsenic Drinking Water Standards

World Health Organization
• 1958 – 200 µg/L
• 1963 – 50 µg/L
• 1993 – 10 µg/L

US EPA
• 2001 – 10 µg/L

Some states
• 5 µg/L

Private Wells Not Regulated
40% of New Hampshire households served by private water systems

Restricted study to pregnant women with private well at home

Included a region with high concentrations based on our earlier work

15% of pregnant women – tap water exceeds the MCL of 10 µg/L As
Dietary Sources of Arsenic

- Diet is the main source of arsenic exposure for most.
- There are no statutory limits for arsenic content of food sold in the US and EU.
- In China the limit is 0.15 ug/g.

“Dietary exposure to arsenic should be reduced”
USA long grain rice had the highest mean arsenic level in the grain at 0.26 µg As g⁻¹
Preliminary Studies

- **Pregnancy**: Water & rice in relation to urinary arsenic
- **Infant/Toddler**: As content in formulas
- **Child**: Rice and rice product consumption in relation to urinary arsenic
New Hampshire Birth Cohort Study

Pregnancy ➔ Delivery ➔ Months 4 ➔ Months 8 ➔ Year 1

12-16 Weeks
Eligibility screen
- Gest. age, birth weight

24-28 Weeks
Enrollment
- Questionnaire
- Maternal blood, urine, hair, toenail

Maternal diet
(FFQ, diary)
Prenatal records:
Maternal Infection
- Maternal/infant infection
- Cord blood (immune profile, epigenetics)
- Placenta (gene expression)
- Meconium
- (microbiome)

Infant infection
Infant Diet
Infant Urine/Stool, Breast Milk

Infant infection
Infant Diet
Infant Urine/Stool Breast Milk

Infant health/
infection
Infant/
Maternal diet (FFQ)*
Pediatric record
Infant Blood/Urine/Stool
Physical exam and
developmental evaluation

75-80% participation ~100% urinary As, water/diet
Pregnancy Exposure

- Baseline questionnaire
- Chart review

Samples:
- Home water,
- Spot Urine
- 3-day water, seafood and rice intake

As3 ↔ As5 ↔ MMA ↔ DMA ↔ AsB

ICP-MS
Urinary arsenic higher in rice eaters (n=229)

Median Urinary Arsenic $\mu g/L^*$

- **iAs**
- **MMA**
- **DMA**
- **Total As**

*excludes arsenobetaine

* $P < 0.05$
** $P < 0.01$
*** $P < 0.001$

Gilbert-Diamond, PNAS, 2011
Water Arsenic & Rice Intake Contribute to Urinary Arsenic

1/2 cup of rice/day = 1 liter of 10 ug/L As water

Gilbert-Diamond, PNAS, 2011
Dietary contributors of As exposure in infants?

How is early life As exposure best measured?
Formulas with organic brown rice syrup contained As when reconstituted with As-free water.

Jackson et al., *EHP*, 2012
Limitations/Future Studies

1. Analysis of individual’s As exposure from rice:
 - No testing of actual rice samples
 - Nor specific brand/country of origin information
 - Didn’t fully account for rice fillers/sweeteners

2. Analysis of infant/toddler formula
 - No actual infant exposure levels i.e., biomarkers such as urine

3. We need to understand the health impacts of food sources of As exposure.
Conclusions

• Estimated arsenic intake via **well water** contributes to urinary arsenic concentrations in pregnant women.

• **Rice**, alone, and without accounting for the arsenic content of rice, is associated with urinary arsenic concentrations in pregnant women and kids.

• Need to consider multiple exposure routes when designing arsenic reduction strategies in the U.S.

Need for private well testing is clear.
Need to be careful about making dietary recommendations to pregnant women and children.
Collaborators

Emily Baker, Dartmouth
Kathy Cottingham, Dartmouth
Matt Davis, Dartmouth
Diane Gilbert-Diamond, Dartmouth
Shohreh Farzan, Dartmouth
Dennis Fei, U Miami
Victoria Flanagan, Dartmouth
Carol Folt, Dartmouth
Jay Gandolfi, U of Arizona
Joann Gruber, UNC
Brian Jackson, Dartmouth
Devin Koestler, Dartmouth
Susan Korrick, Harvard
Zhigang Li, Dartmouth
Carmen Marsit, Dartmouth
Carolyn Murray, Dartmouth
Kari Nadeau, Stanford
Tracy Punshon, Dartmouth
David Robbins, U Miami
Judy Rees, Dartmouth
Vicki Sayarath, Dartmouth
Donna Spiegelman, Harvard
Vivien Taylor, Dartmouth
Rebecca Troisi, NCI

Clinicians throughout the State