Case Studies of Arsenic Mobilization Related to Landfills and Superfund Sites

- Multi-group presentation
 - Columbia University SBRP and NYSDEC Region 3
 - Boston College and USEPA Region 1
 - Dartmouth College SBRP
- Steven Chillrud, Rudi Hon, Ben Bostick and their many colleagues
Arsenic in plumes of old landfills - analog for what may happen in landfill
Implications for landfill leachates

• Arsenic mobilization coupled to iron mobil.
• Mobilization tied to organic carbon sources in landfill wastes
• Regional variations of As levels in natural soils can lead to variations in gw [As], if Fe
Causes of Arsenic Contamination

- Entirely natural:
 - Arsenic in solid phase released to waters
- Entirely anthropogenic:
 - Human activities release As and contaminate soil and groundwater
- Anthropogenically induced mobilization of naturally-occurring-Arsenic:
 - Changes to groundwater chemistry allow natural As to be released from sediment to groundwater (coupling of Fe and As)
- Combination of above
Arsenic Mobilization—Geochemical Explanation
Arsenic & Iron vs ORP – GW Near Landfills

![Graph showing the relationship between ORP and arsenic/iron concentrations](image-url)
Landfill sites

Winthrop LF

Coakley LF

Central Mass. LF

NYSDEC Region 3 Landfills
Redox zonation of landfills
Baedecker & Back 1979;
Danish landfills T.H. Christensen and colleagues (mid 1990s -
Coakley: Batch Experiments and Field Data

[Graph showing a redox diagram with various arsenic concentrations indicated by different symbols.]

- As Conc.: 0 - 10 ppb
- 10 - 50 ppb
- 50 - 100 ppb
- 100 - 320 ppb

[Legend showing symbols for different arsenic concentration ranges.]
Coakley: Arsenic Mobilization & Natural Attenuation

$30\text{Fe(OH)}_3 + C_6H_6 + 60\text{H}^+ \rightarrow 30\text{Fe}^{2+} + 6\text{CO}_2 + 78\text{H}_2\text{O}$ \hspace{1cm} $\Delta G^o = -2359.96 \text{ kJ}$
Arsenic in Ground Water

![Graph showing arsenic levels vs. dissolved inorganic carbon (ppm C)](image)
Superfund Sites: Arsenic and Benzene/VOC (DOC) Sites are Highly Correlated

- **Northeast**
 - 42 of 45 As contaminated sites are contaminated with either Benzene or VOC

- **National**
 - 419/555 As sites also have aromatic hydrocarbon contamination
 - That is roughly twice the random probability
Winthrop Contamination & Remediation

1930: Dump operation begin including industrial waste
1972: Landfilling begins and serves adjacent towns
1979: Buried drums found
1982: Landfilling ceases
1987: Clay cap installed
1995: SVE and P&T remediation starts
2004: Rebound experiment begins
Reduction Induced by Leachate

<table>
<thead>
<tr>
<th>Sed As (mg kg⁻¹)</th>
<th>Dissolved Species mean, mg L⁻¹</th>
<th>Cl⁻</th>
<th>DOC</th>
<th>Sulfide</th>
<th>Fe²⁺</th>
<th>Iron</th>
<th>COD</th>
<th>Water As</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 ± 1</td>
<td>Central Region</td>
<td>29 ± 6</td>
<td>26 ± 14</td>
<td>53 ± 49</td>
<td>24 ± 15</td>
<td>37 ± 9</td>
<td>35 ± 23</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>8 ± 2</td>
<td>Upgradient Region</td>
<td>10 ± 2</td>
<td>16 ± 4</td>
<td>5 ± 2</td>
<td>2 ± 4</td>
<td>2 ± 4</td>
<td>1 ± 0</td>
<td>0.01 ± 0.005</td>
</tr>
</tbody>
</table>

Direction of Flow

Winthrop As mobilization
• Al Turi Landfill- 129 Acres
• Sections range from unlined (older) to single layer, to modern double lining
• Leachate well characterized
• Monitoring wells in overburden (below waste)
Freshkills Landfill
Staten Island, NY

Leachate monitoring wells
(screened in waste)

Cl is conservative tracer of leachate strength and mixing

Sources for Fe
acid solubilization
redox mobilization

Sinks for Fe, Mn
sulfide formation
carbonate precipitation
ion exchange

Data from Walsh 1996
As Immobilization via Reduction
Arsenic remediation via reduction?

Aqueous Phase
Arrows in Ground Water (ppb) at SH Landfill
November 2004

Legend

ARSENIC

- 2.1 - 7.5
- 7.6 - 17.0
- 17.1 - 36.0
- 36.1 - 130.0
- 130.1 - 330.0
- 330.1 - 540.0
- 540.1 - 650.0
- 650.1 - 1600.0

○ Arsenic = non-detect
Frequency of Arsenic Levels in Soils

CENTRAL MASSACHUSETTS

Database: 510 samples
Nickel vs Arsenic in Soils -- Devens

Soil Background -- Devens

\[y = 1.0215x \]

\[R^2 = 0.666 \]
Arsenic in Bottom Sediments mg/Kg

Landfill
Grove Pond Bottom Sediments

Nickel in Grove Pond Bottom Sediments

$y = 0.6965x - 7.9309$

$R^2 = 0.8074$
Iron Flocs as integrating triage tool

- Seeps near old landfills easy to locate (color)
- Relatively easy to collect and analyze (compared to installing wells)

5 µm pore size absorbant pad for thin films
Control Site Region 3 Flocs

Max Central MA Lake Floc

Winthrop Lake Floc

As (mg/kg)

Clinton Landfill Data

South Meadows Pond Seep Samples

<table>
<thead>
<tr>
<th>Site</th>
<th>Unfiltered Total Arsenic</th>
<th>Unfiltered Total Iron</th>
<th>Unfiltered Total Manganese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seep 1</td>
<td>600 µg/L</td>
<td>75,000 µg/L</td>
<td>8,200 µg/L</td>
</tr>
<tr>
<td>Seep 2</td>
<td>71 µg/L</td>
<td>30,000 µg/L</td>
<td>1,700 µg/L</td>
</tr>
<tr>
<td>Seep 3</td>
<td>4,100 µg/L</td>
<td>120,000 µg/L</td>
<td>6,700 µg/L</td>
</tr>
<tr>
<td>Monitoring Well</td>
<td>Dissolved As</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW6</td>
<td>429 µg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW7</td>
<td>427 µg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW5</td>
<td>1209 µg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinton Sampling Points

- Seep collection points
- Monitoring Wells
~150 old landfills in Region 3 (2M people)
=> thousands nationwide

NYSDEC Region 3 landfill locations (open stars) 47 of ~150 inactive landfills are shown with census track population densities. Seven landfill sites (filled stars) have been sampled for Fe floc chemistry by state personnel and Columbia SBRP researches in 2004-2005.
Implications for iron residuals

• Field and laboratory data consistent with
 – widespread impacts of landfill organics on Fe, Mn, As
 – groundwater [As] range from 10s to 1000s of µg/L higher levels in Central MA w/ higher soil [As]
 – publications that indicate TCLP not an appropriate test for Arsenic leachability for arsenic bearing iron residuals
 – Predict large mobilization of As from ABRs, will this lead to high [As]?
 – sulfide and carbonate precipitation, limiting dissolved [As]?, complicated by thioarsenites
Implications (continued)

• Any liner failures could result in future assessments needing to separate out two sources (leachate As & induced mobilization of As)

• As toxicity to methanogens @ As(III) > 300 ppb?
 – Spatial separation of methanogenesis and iron mobilization suggests that field data from Central MA monitoring wells (not in waste) not necessarily applicable to laboratory results of As toxicity of methanogens at As > 300 ppb
Columbia Acknowledgements

• Funding:
 – NIEHS Grant P42 ES10349 (SBRP)
 – NIEHS Grant P30 ES09089 (Center in N. Manhattan)
 – NSF DGE9554573 (GRT Traineeship in Hydrology)
 – United Technologies Corporation

• Collaborators
 – Columbia/LDEO/Barnard: Alison Keimowitz, Jim Simpson, Martin Stute, Brian Mailloux, Jamie Ross, Saugata Datta, Pamela Cole, Matt Nanes, Sandy Santillan
 – CUNY: Yan Zheng, Yi He, Hun Bok Jung
 – Univ Conn/Univ of Crete: N. Nikolaidis
 – NYSDEC: Steve Parisio
 – ESE Harding
Boston College Acknowledgements:

- Funding:

 EPA RARE Grant
 Boston College Research Program

- Collaborators:

 Bill Brandon, EPA Region 1 BRAC
 Kevin Doherty, Knoll Environmental, Inc.
 Matthew Mayo, Thom Davidson, and Newton Tedder, Boston College
 Dave McTigue and Carol Stein, Gannett Fleming, Inc.
 Joel Frisch and Jay Billings, Northeast Geoscience, Inc.
 Mark Bishop, New England Testing Lab, Inc.
Dartmouth Acknowledgements

• Funding:
 – NIEHS SBRP
 – NSF
 – DOE
 – Columbia SBRP

• Collaborators
 – Carl E. Renshaw, Jamie L. deLemos, Stefan Stürup, Xiahong Feng
The End