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Research Background & Motivation 

• PAHs are normally found in mixtures of similarly structured compounds. 

 

 

 

 

            anthracene        pyrene           benzo[a]pyrene 

 

 

• Seven PAHs classified as probable human carcinogens by U.S. EPA, though it 
is commonly understood that many others belong on the list 

 

• PAHs are common components of petroleum and byproducts of combustion 
and fuels conversion. 

 

• Manufactured gas plant waste remains a concern. 



Typical MGP Site 

Subsurface solid tar and non-

aqueous phase liquids 

•  Manufactured Gas Plants (1816 – 1960) 

- Provided lighting and heating gas 

- Byproduct tar contains high levels of PAHs that are 

likely carcinogenic. 



Research Goals and Techniques 

• Report, characterize, and predict the phase behavior and thermodynamics 
of PAH mixtures 

 

– Vapor pressure (Knudsen effusion technique) 

– Enthalpies of fusion (differential scanning calorimetry) 

– Melting point analysis 

– Microstructure  (X-Ray diffraction) 

– Composition (gas chromatography – mass spectrometry) 

– Aqueous solubility 

– Sorption to Natural Particles 

 
• Offer key data for design of remediation procedures 

 



Some General Concepts & Comments 

Mixtures and Model Tars Prepared by Quench-Cool Technique 

-Components melted and agitated for 5 min 

-Container is quench cooled in liquid nitrogen 

-Intended to preserve disorder of well mixed liquid during crystallization 

Vapor Pressure & Raoult’s Law

-Equilibrium pressure of gas above 

condensed mixture phases 

 

-For ideal mixture: P x P sati i

i

What is an Azeotrope? 

-Represents a non-ideal case 

-Vaporization at constant vapor 

pressure and molar ratio 

-Result of molecular interaction 





 
A Look Back: 

 

Characterization of PAH Mixture Phase Behavior 

In the Absence of Water 



Solid-Liquid Phase Equilibrium 
Binary Anthracene + Pyrene Mixture System 

EUTECTIC PHASE DIAGRAM 

Mixed Solid 

Liquid + Solid 

Only Liquid 

• Eutectic point at 404 K and xA = 0.22 

• Coexistence of solid and liquid between thaw 
and liquidus curves 

• Energetically, pyrene and eutectic mixture are 
very similar. 

• Ability of anthracene to reach lower energy 
crystalline configuration is impeded by small 
amounts of pyrene 

• “Estimated” heat of fusion (blue lines) 
represent stoichiometric model. 

Experiments reveal complicated interaction between components. 

 

Rice, J.W.; Fu J.; Suuberg, E.M. J. Chem. Eng. Data 2010 

 fusHpeak1  xeut fusHeut

xeut   linear function of xanthracene





Solid-Vapor Phase Equilibrium 
Binary Anthracene + Pyrene Mixture System 

 

Clausius-Clapeyron Plot 

Rice, J.W.; Fu J.; Suuberg, E.M. J. Chem. Eng. Data 2010 

- Solid azeotrope formed at anthracene mole fraction of 0.14 

      - Vapor pressure of azeotrope near that predicted by Raoult’s Law, but…  

          - Complicated & non-ideal interaction between components 



Explanation for this Non-Ideal Phase Behavior 

 

• Formation of cluster-like entities 

 

• Cluster is the locus of local order 

 

• Weak binding between clusters 

 

– Melt at low temperatures 

– Evaporate as packets 

 



Multi-Component PAH Mixture Behavior 
Melting Temperatures and Enthalpies of Fusion 

Description 
TTHAW TLIQ ∆fusH  

(K) (K) (kJ·mol
-1

) 

Anthracene(1) 487 489 27.8  1.9 

Pyrene(2) 422 423 16.2  1.1 

Fluoranthene(3) 382.5 384 18.2  1.3 

Benzo[a]pyrene (4) 449 419 11.3  0.3 

Phenanthrene (5) 371 372 16.3  1.1 

Fluorene (6) 387 388 19.4  1.4 

Chrysene (7) 525 526 23.3  1.6 

1 + 2 (equimolar) 404 453 18.6  1.3 

1 + 4 (equimolar) 414 440 14.6  1.0 

1 + 2 + 3 (equimolar) 377 433 14.6  1.0 

1 – 4 (equimolar) 353 369 6.9  0.5 

1 – 5 (equimolar) 342 358 6.3  0.4 

1 – 6 (equimolar) 321 348 4.5  0.3 

1 – 5 + 7 (equimolar) 333 353 5.8  0.4 

Differential Scanning Calorimetry 

Fusion enthalpies approaching liquid limit of ∆fusH = 0 



Multi-Component PAH Mixture Behavior 
Vapor Pressure Measurements 

         Ideal behavior? 

  (Final mixture still contains 7 mol% fluorene) 

Loss of fluorene 

Rice, J.W.; Fu J.; Suuberg, E.M. Ind. Eng. Chem. Res. 2011 



PAH Mixture Phase Behavior 
Conclusions to Keep in Mind 

• Tarlike visual appearance begins to manifest itself with 5-6 
components. 

 
– Mixtures black in color (Binaries and ternaries are white or yellow.) 

– Mixtures inhomogeneous in texture 

 

• Gradual transition from distinct solid melting behavior to a more ill-
defined “melting.” 
 

– DSC peaks lose definition 

– Fusion enthalpies approach liquid limit of ∆fusH= 0 

– Melting temp analysis can no longer discern thaw or liquidus point 

 

• Non-ideal vapor pressure of fewer component mixtures gives way to 
commonly assumed ideal mixture behavior, i.e., Raoult’s law 



 
Moving Forward: 

 

Characterization of PAH Mixture Phase Behavior 

In the Presence of Water 



Aqueous Solubility of PAH Mixtures 

• Environmentally significant for aquatic environments, sediment, and
saturated soil

• Aqueous solubility behavior of PAH mixtures not fully understood
– Especially true for weathered mixtures that have a reduced number of components

• Data exist for non-aqueous phase liquids (Peters and coworkers, 1993; 1997;

1999; 2000):

– NAPL Model: Ci
water  x iSi

pure f
L
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– Solid Solution Model: 



Ci
water  xiSi

pure

Ci
water = solubility of species i in water

xi = mole fraction of i in mixture 

Si
pure = pure species i solubility

(fS/fL)i = ratio of solid-liquid reference

fugacities of pure i 



Derivation of Commonly Used Models 

• Solid and liquid system of PAHs described by: 

 

• Definition of the mole fraction of species i in the NAPL phase and 

subsequent simplification assuming that 
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 NAPL is an ideal solution. 

 if solid phase precipitates from liquid solution, it does so as 

a pure species. 

• If system above is in equilibrium with water, and the aqueous phase is dilute so the total 

volume is unaffected by presence of dissolved PAHs: 
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• If the components in the NAPL were to exist as solids (as might be the case in a dense 

NAPL or tar), the species-specific fugacity ratios would be unity: 



Ci
A  xi

N i
NSi

S

NOTE: Superscripts are Solid S, NAPL N, Liquid L, Aqueous A; and xi
A* is the aqueous solubility of pure species i. 



Renewed Interest and Deviation from Models 

• The composition of a coal tar aged for five-years in an artificial aquifer changed due to depletion of 

relatively soluble compounds. 

• Aqueous phase concentrations of PAHs from aged, solidified coal tar “were much smaller than those 

from fresh coal tar and also those from Raoult’s law calculations using subcooled liquid solubilities.” 

• “If solid solubilities are used as a reference state, Raoult’s Law can give better approximations of 

aqueous-phase equilibrium concentrations.” 



Experimental Technique 

Equilibration 

& Agitation 

PAHs + Water 

Processing 

Extraction 
with DCM 

GC/MS 
Analysis 



Aqueous Solubility of 
Binary Quench-Cooled PAH Mixtures 

Anthracene + Fluoranthene Mixtures Anthracene + Pyrene Eutectic Mixtures 

•   Apparent phase separation behavior for the equimolar binary mixture components 

•   More complicated behavior might exist for the A:P eutectic. 



Ternary Anthracene + Fluoranthene + Pyrene Mixtures 

More Apparent Phase Separation Behavior 



Aqueous Solubility of Two, 4-Component PAH Mixtures: 

Transition Towards Solid Solution Behavior 

Solid Model: 



Ci
water  xiSi

pure

< D.L. 

The compounds that loosely follow the solid solution model (FLN, PYR, PHN) exist at 

mole fractions (xi
mixture = 0.25) that approaches the predicted NAPL solubilities (xi

N). 



Aqueous Solubility of a 9-Component NAPL: 

• Concentrations of both benzo(a)pyene 

and chrysene 

– below detectable limits 

 

 

 

• Acenaphthylene behaving as mixed solid 

• xi
N  > xi

mixture 

 

 

 

• Acenaphthene, Fluorene, Fluoranthene, 

Phenanthrene, Anthracene, and Pyrene 

have begun to follow the NAPL model 

• xi
N near or > xi

mixture  

Ci
water  x iSi

pure f
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Ci
water  xiSi

pure



Summary & Conclusions 

• PAH mixtures (and potentially other systems of large, organic compounds) with 
a finite number of agents may be surprisingly non-ideal. 
– Melting temperature depression and azeotropy 

– Aqueous dissolution that is not easily predicted by common solution models 

 

• As PAH mixtures become enriched in components to a point at which only a 
discrete number of compounds exist in the mixture, solubility might be roughly 
predicted by ideal solid-solution theory or by pure component values.  

 

• “Tars” tend to form as the number of mixture components increases. 

 
• As more PAHs are added to create tarlike mixtures, the aqueous solubilities of 

these higher-component mixtures seem to better fit the values predicted by 
ideal solid and NAPL solution theory, though there is still failure to predict 
actual values. 

 

• Prediction of aqueous solubility by ideal NAPL models may not be appropriate 
for weathered tars or NAPLs in the environment. 
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