Identifying G X E Interactions and Thresholds for Toxicity in Diversity Outbred Mice

*John E. (Jef) French, Ph.D.
Special Volunteer NTP

*Adjunct Professor, Center for Pharmacogenomics & Individualized Therapy and Department of Nutrition at University of North Carolina at Chapel Hill and Principal, TOXGEN/TOXicoGENetics™, Chapel Hill, North Carolina
Outline

• **Role and relevance** – inbred homozygous strains vs. Diversity Outbred & CC RIL mice

• **Proof of concept**: Benzene, an environmental genotoxicant and leukemogen

• **Benzene metabolites** — chromosomal damage associated with the development of leukemia

• **Benchmark Concentration Models** – point of departure

• **Mapping resistance and/or susceptibility QTLs**

• **Future directions**
Genetic and Epigenetic Basis for Susceptibility

Link individual exposure to biology and to disease
(Adapted from National Research Council, 1987)
Addressing Human Variability in Next-Generation Human Health Risk Assessments of Environmental Chemicals

Lauren Zeise, Frederic Y. Bois, Weihsureh A. Chiu, Dale Hattis, Ivan Rusyn, and Kathryn Z. Guyton

Types of biological variability

- Heredity (genetic and epigenetic)
- Sex, lifestage, and aging
- Existing health conditions
- Coexposures (sources outside decision context)
- Food/nutrition
- Psychosocial stressors

Susceptibility indicators

- Exposure parameters
- Background and coexposure doses
- PK parameters
- Endogenous concentrations
- PD parameters
- Baseline biomarker values
- Systems parameters
- Outcome latency, likelihood, and severity

Source-to-outcome continuum

- Source/media concentrations
 - Multiple sources leading to chemicals in multiple media
- Exposure
 - External doses
 - Multiple chemicals via multiple routes
- Pharmacokinetics
 - Internal concentrations
 - Multiple chemicals (including metabolites) at multiple target sites
- Pharmacodynamics
 - Rinoigical response measurements
 - Multiple biological responses in multiple tissues/biological media
- Systems dynamics
 - Physiological/health status

Modifying how changes in source/media concentrations are propagated to changes in outcome.

For fixed source/media concentrations, modifying the background or baseline conditions.
Brief Background - Toxicogenetics

- Integration of genetics with toxicology
- Inter-individual variation in genetics and environmental exposure (uncontrolled variables)
- Hazard identification and characterization – false negative and false positive error rates?
- Corroborate genetic epidemiology and/or provide an effective tool for safety assessment
Benzene 28 Day Inhalation Exposure: Proof of Concept

- Diversity outbred (J:DO) male mice: 7 & 8th randomly outbred generations; selected from 175 breeding pairs
- Randomly assigned to exposure groups by weight
- Dose levels: 0, 1, 10, 100 ppm benzene, 28 days, 6 hr/day
- 75 male mice per exposure group, 300 mice/study
- 2 independent cohorts to assess reproducibility (600 mice total)
- Endpoints for hematotoxicity and genetic damage
 - % reticulocytes and micronucleated reticulocytes in peripheral blood and bone marrow
 - Mouse Universal Genotyping Array (9K SNPs)
 - Linkage mapping analysis (DO QTLRel)

Benzene metabolism and toxicity

- Human & rodent hematotoxicant and carcinogen
- Metabolized in liver and bone marrow
- Human & rodent ADME (toxicokinetics) are comparable
The results....
Benchmark Concentration Models
DO vs. B6C3F1 (Farris et al. 1996)
<table>
<thead>
<tr>
<th>Quartile</th>
<th>BMC</th>
<th>BMCL_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All quartiles</td>
<td>0.367</td>
<td>0.200</td>
</tr>
<tr>
<td>Q1</td>
<td>0.550</td>
<td>0.205</td>
</tr>
<tr>
<td>Q2+Q3</td>
<td>0.315</td>
<td>0.117</td>
</tr>
<tr>
<td>Q2+Q3+Q4</td>
<td>0.275</td>
<td>0.130</td>
</tr>
<tr>
<td>Q4</td>
<td>0.257</td>
<td><0.001</td>
</tr>
</tbody>
</table>

BMCL_{10} = 0.205 ppm

0.205/0.001 ppm is ≈200X

15:56 04/18 2013
Benchmark Concentration Model (BMC)

EPA Risk Assessment 1988 (Updated & revised 2003)

BMCL* = 8.2 mg/m³ (2.6 ppm); UF = 300; MF = 1

RfC** = 3 x 10⁻² mg/m³ (9.4 ppb)

*Decreased lymphocyte count in 44 individuals (Rothman et al., Am. J. Ind. Med. 29:236, 1996). No metric provide (i.e. 1SD or 10% above the control mean).

Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds ratio)

DO mouse population linkage mapping

- Genetically heterogeneous reference population
- Derived from a set of 8 inbred founder strains (from the Collaborative Cross)
- 45 million segregating SNPs, indels, & CNV
- Balanced founder allele (1/8) frequencies averaging 12%
- Combination of high genetic diversity, low MAF, and fine recombination block structure make the DO mice ideal for genetic mapping

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Name / description</th>
<th>Chr Location (GRChr)</th>
<th>Size</th>
<th>Alert/Location</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nkain2</td>
<td>Na+/K+ transporting ATPase interacting 2</td>
<td>10:31689319-32889915 (→)</td>
<td>1200596</td>
<td>Structural variant* Ins 31838075-31838077 del 32310195-32319195</td>
<td>MGI:1923447</td>
</tr>
<tr>
<td>Trdn</td>
<td>Triadin</td>
<td>10:33083483-33476709 (+)</td>
<td>393226</td>
<td>Nonsynonymous SNP* rs33783582 rs33784331 Structural variant del 33269490-33269848</td>
<td>MGI:1924007</td>
</tr>
<tr>
<td>Clvs2</td>
<td>Clavesin 2</td>
<td>10:33512286-33624769 (→)</td>
<td>112483</td>
<td>Structural variant del 33578793-33578899</td>
<td>MGI:2443223</td>
</tr>
<tr>
<td>Gm4794</td>
<td>Predicted gene 4794</td>
<td>10:33766424-337821</td>
<td>15691</td>
<td>Structural variant del 33772397-33777130 del 33779262-33779648</td>
<td>MGI:3645972</td>
</tr>
<tr>
<td>Sult3a1</td>
<td>Sulfotransferase family 3A, member 1</td>
<td>10:33863935-338794</td>
<td>15540</td>
<td>Structural variant gain 112K bp 33876195</td>
<td>MGI:1931469</td>
</tr>
<tr>
<td>Rsph4a</td>
<td>Radial spoke head 4 homolog A</td>
<td>10:33905485-33915883 (+)</td>
<td>10398</td>
<td>Nonsynonymous SNP rs253783385 rs33802524</td>
<td>MGI:3027894</td>
</tr>
<tr>
<td>Zufsp</td>
<td>Zinc finger with UFM1 specific peptidase domain</td>
<td>10:33926936-33951212 (→)</td>
<td>24276</td>
<td>Nonsynonymous SNP* rs48254962</td>
<td>MGI:1919830</td>
</tr>
</tbody>
</table>
Expression QTL in DO mice (Liver)

A) Sult3a1

B) Gm4794

C) Founder Effect

D) LOD

Chr 10 (Mb)
Allele specific expression is the rule
Human copy number & 5mCpG variation

- **SULT1A1 phenol sulfotransferase**
 - CNV range 1-6 copies*

Caucasian: 5% - single copy; 69% - 2 copies; 26% -3 or more copies (**362 individuals**)

African-Americans: 0% - single copy; 38% - 2 copies; 62% - 3 or more copies (**99 individuals**)

*Hebbring et al. Human Molecular Genetics 16, 463, 2007
Gaedigk et al. Pharmacogenomics 13, 91, 2012*
<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Name / description</th>
<th>Chr location (GRCm38)</th>
<th>Size</th>
<th>Alert</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gm14066</td>
<td>Predicted gene 14066</td>
<td>2:139256876-139677714</td>
<td>420838</td>
<td>Structural Variant</td>
<td>MGI:3649728</td>
</tr>
<tr>
<td></td>
<td>Serine palmitoyltransferase, long chain base subunit 3</td>
<td>2:139493913-139637674</td>
<td>143761</td>
<td>Structural Variant</td>
<td>MGI:2444678</td>
</tr>
<tr>
<td>Tasp1</td>
<td>Taspase, threonine aspartase 1</td>
<td>2:139833480-140066805</td>
<td>233325</td>
<td>Structural Variant*</td>
<td>MGI:1923062</td>
</tr>
<tr>
<td>Esf1</td>
<td>ESF1, nucleolar pre-rRNA processing protein</td>
<td>2:140119883-140170564</td>
<td>50681</td>
<td>Nonsynonymous SNP rs29958536</td>
<td>MGI:1913830</td>
</tr>
<tr>
<td>Macrod2</td>
<td>MACRO domain containing 2</td>
<td>2:140395309-142392966</td>
<td>1997657</td>
<td>Structural Variant</td>
<td>MGI:1920149</td>
</tr>
<tr>
<td>Gm14077</td>
<td>Predicted gene 14077</td>
<td>2:141230431-141286991</td>
<td>56560</td>
<td>Structural Variant</td>
<td>MGI:3650192</td>
</tr>
<tr>
<td>Kif16b</td>
<td>Kinesin family member 16B</td>
<td>2:142617474-142901531</td>
<td>284057</td>
<td>Nonsynonymous SNP rs27214196</td>
<td>MGI:109824</td>
</tr>
</tbody>
</table>
Summary & Conclusions

• DO mice show significant population variance
• Significant linkage mapping power
• Reproducibility of outcome (2 cohorts)
• MN-RET reliable quantitative biomarker
• Identification of individual DO mouse resistance and susceptibility genotypes
• Potential to inform genetic epidemiology studies and provide statistical evidence for identifying genes with significant effect size & hypothesis based research
Possible directions

• Repeat BMC modeling with additional exposures at 0.1 ppm and 50 ppm to better define shape of the dose response curve
• Perform 2 year inhalation exposure at 0.1, 1, and 10 ppm to define cancer BMCL and tumor phenotypes
• Stratify BMCL by quartile or decile to estimate the most susceptible subpopulation at risk
Funding

CC AIRILs - U01CA134240, P50MH090338, P50HG006582, and U54AI081680; Ellison Medical Foundation grant AG-IA-0202-05, National Science Foundation grants IIS0448392, IIS0812464, the Australian Research Council grant DP-110102067, and the Wellcome Trust grants 085906/Z/08/Z, 083573/Z/07/Z, and 090532/Z/09/Z. Essential support was also provided by the Dean of the University of North Carolina (UNC) School of Medicine, the Lineberger Comprehensive Cancer Center at UNC, and the University Cancer Research Fund from the state of North Carolina, and from the Tel-Aviv University for core funding and technical support.

J:DO mice - The Jackson Laboratory and National Institutes of Health (NIH) Grants GM076468 and GM070683 to G.A.C. and by NIH grants R01DA021336, R21DA024845, and R01MH079103 and the Schweppe Foundation to A.A.P.

Benzene studies – were supported by the intramural research programs of the NIEHS/NTP and NIEHS N01-ES-45529, 5T32ES007091-29, P30-ES 06694, and NCI CA023074 to the University of Arizona.

Next steps and future research…..
Acknowledgements

NTP/NIEHS (ADME* & Toxicity)
- Dan Morgan
- Grace Kissling
- Debra King
- Kristine Witt
- Keith Shockley
- Lars Pedersen

Alion (Animal Care & Exposures)
- Herman Price
- Bob O’Connor
- Norm Gage

University of Arizona (ADME)
- Gabe Knudsen – ADME*
- Glenn Sipes – ADME

ILS-Inc. (Genetic Toxicology)
- Kim Shepard
- Cheryl Hobbs
- Les Recio

The Jackson Laboratory (Genetics)
- Dan Gatti
- Gary Churchill

UNC-CH (Genetics)
- David Threadgill
- Ivan Rusyn
- Fernando Pardo-Manuel de Villena