What Goes Around Comes Around: Chasing Polycyclic Aromatic Hydrocarbons from the Beijing Olympics to the U.S. West Coast

> Dr. Staci L. Simonich Professor Environmental & Molecular Toxicology and Department of Chemistry Oregon State University







#### **NIEHS Superfund Research Program**

a hazardous waste research and training program www.niehs.nih.gov/research/supported/srp/index.cfm



#### Research

- » Interdisciplinary
- » Collaborative
- » Solution-Oriented
- » e.g. molecular tox, biomarker development, ecology, remediation

#### Products

- » Over 6,000 publications
- » 55 patents
- Enrichment materials, e.g., fact sheets, videos

#### Network of:

- » 19 university-based research centers
- » 11 individual research grants
- » 5 SBIRs/STTRs

#### Training

- » graduate and post doctoral
- » interdisciplinary

#### **Communication Tools**

- » Research Briefs
- » Risk-e-Learning
- » Workshops
- » Conferences



#### For more information, contact: SRPinfo@niehs.nih.gov

## **OSU Superfund Research Program (SRP)** Polycyclic Aromatic Hydrocarbons: New Technologies and Emerging Health Risks













## PAH Emissions and Outflow from China

```
37.300
   #1 China = 114,000 tons/year
     (22% of World's PAH emissions)
   #2 India = 90,000 tons/year
   #3 U.S. = 32,000 tons/year
Ann
   Lung cancer is 4<sup>th</sup> and 5<sup>th</sup> leading cause of
   death in Chinese men and women
   PAH emissions are increasing in developing
   countries
```

Lang, Tao, and Simonich et al, Environ. Sci. Technol. 2008, 5196-5201

# A New Look at 'Old' PAHs.....

- 20 Parent PAH
- 10 Methyl-PAH
- 22 High Molecular Weight PAH (MW>302)
- 27 Nitro-PAH
- 19 Oxy-PAH
- 34 Hydroxy-PAH
- 15 Chlorinated PAH
- 11 Brominated PAH

## Simonich Lab Air Monitoring Sites



# 2008 Beijing Olympic Games



- Beijing Olympic Games: Aug 8-24
- Source Control Period: Jul 20 Sept 20



### **PAH Concentrations**



Significant reductions in MW< 300 PAH (26% - 73%), MW 302 PAH (22% -77%), NPAH (15% - 68%), OPAH (25% - 53%) measured during the source control and Olympic periods. Wang and Simonich et al, *Environ. Sci. Technol.*, **2011** 

### **Toxicity Study - Ames Assay**



ΣNPAH and ΣOPAH concentrations were 8% of the parent PAH concentrations, while the direct-acting mutagenicity was 200% higher than the indirect-acting mutagenicity.

Wang and Simonich et al, Environ. Sci. Technol., 2011

## Toxicity Study - Comet Assay



The toxicity of PM and percent DNA damage were not statistically different between the source control and non-source control periods.

Wang and Simonich et al, Environ. Sci. Technol., 2011

### **Direct and Indirect Mutagenicity**



Wang and Simonich et al, Environ. Sci. Technol., 2011

## **Comparison of Ames and Comet Assays**



Wang and Simonich et al, Environ. Sci. Technol., 2011

# PAH Risk Assessment – RPF Approach

 Relative Potency Factor (RPF) – ratio of the compound potency relative to the potency of an index PAH, i.e. benzo[a]pyrene (BaP);

$$CancerRisk = \sum_{i=1}^{n} \textcircled{C}_{PAH_{i}} \times RPF_{i} \times UR_{BaP}$$

$$BaP_{eq-i}$$

- UR<sub>BaP</sub> Inhalation unit risk of BaP
  - "the calculated, theoretical upper limit possibility of contracting cancer when exposed to BaP at a concentrations of one microgram per cubic meter of air for a 70 year lifetime" (OEHHA 1993, 2005)
  - Based on a rodent study: 1.1×10<sup>-6</sup> (ng/m<sup>3</sup>)<sup>-1</sup> (*OEHHA*, 2005) Based on an epidemiology study: 8.7×10<sup>-5</sup> (ng/m<sup>3</sup>)<sup>-1</sup> (*WHO*, 2000)

Jia and Simonich et al, *Environmental Health Perspectives*, **2011** 

# PAH Risk Assessment – RPF Approach

• RPFs from an EPA draft under review by the Integrated Risk Information System (IRIS) Program (USEPA 2010)

|                  | PAH                    | Abbreviation | RPF   |
|------------------|------------------------|--------------|-------|
|                  | Anthracene             | ANT          | 0     |
| L2 priority      | Benz[a]anthracene      | BaA          | 0.2   |
|                  | Benzo[b]fluoranthene   | BbF          | 0.8   |
|                  | Benzo[g,h,i]perylene   | BghiP        | 0.009 |
| pollutant        | Benzo[k]fluoranthene   | BkF          | 0.03  |
| PAHs             | Chrysene               | CHR          | 0.1   |
|                  | Dibenz[a,h]anthracene  | DahA         | 10    |
|                  | Fluoranthene           | FLA          | 0.08  |
|                  | Indeno[1,2,3-cd]pryene | IcdP         | 0.07  |
|                  | Phenanthrene           | PHE          | 0     |
|                  | Pyrene                 | PYR          | 0     |
|                  | Benzo[a]pyrene         | BaP          | 1     |
| 5 MW 302<br>PAHs | Dibenzo[a,l]pyrene     | DBalP        | 30    |
|                  | Naphtho[2,3-e]pyrene   | N23eP        | 0.3   |
|                  | Dibenzo[a,e]pyrene     | DBaeP        | 0.4   |
|                  | Dibenzo[a,i]pyrene     | DBaiP        | 0.6   |
|                  | Dibenzo[a,h]pyrene     | DBahP        | 0.9   |

## BaP<sub>eq</sub> Concentration During the Olympics



Jia and Simonich et al, Environmental Health Perspectives, 2011

# BaP<sub>eq</sub> Concentration Reduction



Jia and Simonich et al, Environmental Health Perspectives, 2011

### Cancer Risk Assessment



Estimated cancer risk is 46% lower due to source control measures if they were sustained over time.

The total excess cancer risk would be underestimated by 23% if the 5 MW 302 PAHs were not included in the estimate

## Simonich Lab Air Monitoring Sites



## Mt. Bachelor Source Regions



Asian and North American Source Regions



Western U.S. Urban Source Regions

Primbs and Simonich et al, Environ. Sci. Technol. 2008, 6385-6391.

## Gas and Particle Phase PAHs



- Gas phase PAHs <u>not correlated</u> with particle phase PAH concentrations
- Gas phase PAHs <u>positively correlated</u> with Fluorotelomer Alcohol (FTOH), PCB, retene, and levoglucosan concentrations (p<0.05)
- Particle phase PAHs <u>not correlated</u> with FTOH, PCB, retene or levoglucosan concentrations (p<0.05)
- Anthracene <u>positively correlated</u> with other gas phase PAH and FTOH concentrations (p<0.05)

Primbs and Simonich et al, Environ. Sci. Technol. 2008, 6385-6391.

#### Trans-Pacific Transport of Particulate Phase PAHs



Primbs and Simonich et al, *Environ. Sci. Technol.* **2008**, 6385-6391.

## Simonich Lab Air Monitoring Sites



## **PAH Emissions from Siberian Fires**





June 2, 2003

June 2, 2003

10-day Air Mass Back Trajectories

Marys Peak and Cheeka Peak

**PAH Air Concentrations** 

Marys Peak and Cheeka Peak

Genualdi and Simonich et al, Environ. Sci. Technol. 2009, 1061-1066



#### Simonich et al, Chemico-Biological Interactions, 2010



Simonich et al, Chemico-Biological Interactions, 2010

## Simulating Photochemical Transformation During Trans-Pacific Transport







#### Personal PAH Exposure - China











#### **Personal PAH Exposure - CTUIR**





Simonich et al, Chemico-Biological Interactions, 2010



#### **OH-PAHs** Measured

1-OH-Nap

3-OH-Fla

Nap 2-OH-Nap 2-OH-AntQn Flo 9 Phen 1,3-OH-Nap 2,6-OH-AntQn 7 1,5-OH-Nap 1-OH-Cry 1,6-OH-Nap 2-OH-Cry 3 1,7-OH-Nap 3-OH-Cry Flon 2 1 2,6-OH-Nap 4-OH-Cry 2,7-OH-Nap 6-OH-Cry  $\overset{||}{O}$ AntQn 2-OH-Flo 3-OH-BcPhen **BcPhen** 2 3-OH-Flo 2-OH-BaA 1 Pyr BaA 2 Cry 1 9-OH-Flo 3-OH-BaP 2-OH-Phen 7-OH-BaP 4 3-OH-Phen 9-OH-BaP 6 4-OH-Phen 10-OH-BaP 12 11 BaP BbF 1-OH-Flon 12-OH-BaP Fla 10 2-OH-Flon 11-OH-BbF 9 1-OH-Pyr 7

### **OH-PAHs in Human Urine**



15 of 33 OH-PAHs detected in urine sample

## **OH-PAHs in Beijing Particulate Matter**



14 of 33 OH-PAHs detected in particulate matter sample 1- and 2-OH-Nap, 2-OH-Flo, 3-OH-Phen, 3-OH-Fla, 1-OH-Pyr, 3-OH-Cry, 2-OH-BaA, 3-OH-BcPhen were detected both in urine and PM samples

# Conclusions

- Significant reduction in PAH concentration and inhalation cancer risk during Beijing Olympic source control measures
- NPAH and OPAH made up a significant portion of overall mutagenicity of PM<sub>2.5</sub> in Beijing
- MW 302 PAH concentrations significantly contributed to the overall inhalation cancer risk
- PAHs undergo episodic trans-Pacific atmospheric transport to the U.S. West Coast
- Experiments underway to simulate the photochemical transformation of PAHs during trans-Pacific atmospheric transport
- Personal exposure studies underway in China and Confederated Tribes of the Umatilla Indian Reservation

#### **OSU SRP Renewal: Non-biomedical Project**

#### "Formation of novel PAH Intermediates in Complex Environmental Mixtures and Evaluation of Human Exposure"

Predict, identify and quantify novel PAH intermediates at Superfund sites pre- and post-remediation, using computational methods, as well as laboratory and field experiments, in order to determine the importance of human exposure to these intermediates.

## Acknowledgements

National Institute of Environmental Health Sciences, National Institutes of Health – SRP (P30ES00210) and ES016465

**U.S. National Science Foundation** 

National Scientific Foundation of China