
 1 

 
GAPWM: A Genetic Algorithm Method for Optimizing a Position Weight Matrix 
 

Leping Li, Yu Liang and Robert Bass 
Biostatistics Branch and Computational Biology Faci lity 

National Institute of Environmental Health Sciences  
Research Triangle Park, North Carolina 27709 

li3@niehs.nih.gov 
 

 
GAPWM is a tool that derives an improved PWM via a genetic algorithm from an 
existing PWM, a set of sequences containing a motif  (e.g., ChIP sequence) and a 
set of background sequences. 
 
Usage: 
 
gapwm -fm <motifSeqFile> -fb <backgSeqFile> -fpwm < initialPWMfile> 
[optional_arguments] 
 
  -fm   motifSeqFile file containing motif sequence s in FASTA format, e.g., ChIP 

file 

  -fb   backgSeqFile            file containing bac kground sequences in FASTA format 

  -fpwm initialPWMfile          file containing ini tial PWM 

  -g    maxGeneration           maximal number of g enerations for a GA run (default: 1000) 

  -p    populationSize          population size (de fault: 100) 

  -rg   greaterMutationRate  mutation rate for firs t 100 generations (default: 0.05) 

  -rl   lesserMutationRate  mutation rate for the g enerations after 100 (default: 0.02) 

  -sp   specificity      for ROC integration from 0  to 1.0-specificity (default: 0.9) 

  -fo   output           name of the output file (d efault: output.txt) 

  -fc   constraintFile   file containing position c onstraints 

 
 
Mandatory Arguments 

 
Three files are required to run GAPWM: 1) file cont aining motif sequences as 
denoted by the ‘-fm’ option; 2) file containing bac kground sequences as denoted by 
the ‘-fb’ option; and, 3) file containing initial P WM to be optimized as denoted 
by the ‘-fpwm’ option.  Unless qualified, each file  is assumed to reside in the 
current working directory.   
 
Example:  
 
gapwm -fm  ../Seq/human_Oct4/hg17BoyerOct4LociMasked_training 1.seq  
-fb  ../Seq/human_Oct4/backgCDS_650_split1_set1.seq -fpwm  ../PWMs/knownOct4Sox2.mx 
-g  1000 -p  10 -rg  0.05 -rl  0.02 -fc  ../Others/Oct4Sox2_constraints.txt -fo  
result.txt 



 2 

Information on Required Files 
 
Sequences 
 
Sequences in both the motif set and the background set should be in case-
insensitive FASTA format. For example: 
 

>chr1:12610241-12610625 5'pad=0 3'pad=0 revComp=FAL SE strand= 
ggaagagttaatcggatcggctttggctgatagttcaggctccaaagttc 
agtcccagtcagagccaccccggaggaattgtaaatctcagggcagtatt 
taacaaaacaaaagcaacctggaattacatgcaggtttggttttctacag 
tacatatttacttaatccccaaggtatgcggctccatgtcagatcagctg 
gctttgcggccctttcacccccctagttcacaacagtttaagtttcaaac 
taattccctgttttcgctcttcctcttcacagggctggctggagacagcc 
tggcctgcctccctctcctgatggctctggtcaccgcgtgagtcagcctg 
gcctgggctgggagttgggtgacagcctgcccact 
>chr1:18703077-18703668 5'pad=0 3'pad=0 revComp=FAL SE strand= 
cgcatcagcccgcacaacttctggccgaggccagccggcagaggcggact 
tggggttggagtgtttgtttgtttgaacttcctcgtcgtcgccaccttcc 
ctccccccaacctccaccccacctcacccccctccccagcttctggacgc 
gtttgactgcagccaggggtggggggtgggggtagggagtgtgtgtggag 
gggagggagaagaggttaaaaaaaagaagacgaagaagacggaaagaaag 
agatcgcagcaggggtgaagggagcggacgggaagcgatttttgccgact 
ttggattcgtccccggcgtgcgcaagaatggcggcccttcccggcacggt 
accgagaatgatgcggccggctccggggcagaactacccccgcacgggat 
tccctttggaaggtaagaacgcccaggctggcctcgccgcgactccgccg 
cccggaactcggggtccttggagaggctgcggtctccaggggacggtggc 
ggcgccggcgatagcagagggatcccgttctcttctgggtcccagtccgg 
gcgcggaacccagggagtttctgggacccatacttgtccgct 
>chr1:52581595-52581889 5'pad=0 3'pad=0 revComp=FAL SE strand= 
caaagaacgaaacaagtagagtgctttacaaatgcagatggagggaaagt 
catcactgagcatcagggtgcggagggcaggaatgctcctgcttctaggc 
tgttggcttccgccttcccccctgcaaactcagttccctgcagcgcggga 
agccttttaggaatcggagtgtggaacagaggaacgctcttaacagttcn 
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 
nnnnngactgagtctacagagaacgtcctcagtttcagaggttcc 

 
The background sequences may be randomly selected f rom coding regions, 
introns, or upstream regions. The average lengths o f motif sequences and the 
background sequences should be comparable. Some bac kground sequences are provided 
in gapwm package. 
 
Initial position weight matrix (PWM) 
GAPWM reads in the initial PWM from an input file w ith the argument –fpwm followed 
by the file name. The first line must contain two ( ONLY two) integers that specify 
the dimension of the PWM. The first integer should always be 4 whereas the second 
integer should match the length of the motif/PWM. F or example: 
 

4  17 
0  7  0  4  4  0  0 11  0  4 11  0 11 11  4  0  1 
7  0  2  0  0  0 11  0  0  2  0 11  0  0  0  0  1 
2  1  2  0  0 10  0  0  0  1  0  0  0  0  0 11  1 
2  3  7  7  7  1  0  0 11  4  0  0  0  0  7  0  1 

 
The value in each cell can be an integer or a float  number, e.g., frequency. 
Standardization will be carried out by gapwm. The f ields can be tab delimited or 
separated by white space(s). 



 3 

Optional Arguments 
 
Maximal number of generations 
GAPWM will stop when the maximal number of generati ons is reached.  This limit can 
be specified using the ‘-g n’ option, where n is an integer representing the 
desired generations (eg., -g 100).  By default, the  maximal number of generations 
is 1000. 
 
Population size 
The population size used by GAPWM can be specified using the ‘-p pop’ argument, 
where pop represents an the desired population expressed as an integer (eg., -p 
200).  By default, the population size is 100. 
 
Mutation rate 
GAPWM uses two mutation rates: a greater mutation r ate for the first 100 
generation and a lesser mutation rate for the remai ning generations. The default 
greater mutation rate of 0.05 can be overridden by the user through the use of the 
‘-rg m’ argument, where m is a floating point number.  Si milarly, the default 
lesser mutation rate of 0.02 can be altered using t he ‘-rl m’ argument. 
 
Specificity 
We assumed that each ChIP sequence in the training set contains at least one motif 
and each background sequence contains no motifs. Th us, given a threshold, one can 
calculate “true” positive and “false” positive rate s, defined as the proportions 
of sequences scoring at or above the threshold in t raining and background sets, 
respectively. Further, we can define a fitness scor e of each PWM as the area under 
the receiver operating characteristic (ROC) curve a cross a particular range of 
false positive rates. 
  
The user can specify the desired specificity using the ‘-sp s’, where s is a 
floating point number. By default, the specificity is 0.9, or 90% of the ROC 
curve.  
 
For example, -sp 0.8 will integrate the area under the ROC curve across a range of 
false positive rates from 0 to 0.2 as the fitness s core. 
 
Output file name 
By default, the results will be saved into a file i n the current working directory 
called ‘output.txt’.  Using the ‘–fo output_filename’ argument, one can specify an 
alternate output file and location. The input param eters and other information are 
also saved in this file.  
 
Constraints 
Prior knowledge such as base conservation can be ea sily incorporated into our 
GAPWM algorithm. Perfectly conserved positions can be fixed at any stage of the 
search. Mutation can be restricted to specific base s (e.g., between two or among 
three bases). These features are useful for finding  starting values for positions 
with no binding data. For instance, one might wish to explore the base pairs 
surrounding a known motif. The part of the PWM corr esponding to the known motif 
can be fixed while the remaining part can be search ed by a GA. 
 
The constraints are read from an input file using t he –fc argument followed by the 
file name. In the file, the first line specifies th e number of constraints. Each 
of the following lines should have three elements: two integers and a string of 
characters (not case sensitive). The two integers s pecify the range of the 
generations for which a constraint will be imposed whereas the string specifies 
the domain of the constraint. The number of letters  in the string must correspond 
to the length of the motif (PWM). A position with a n 'a', 'c', 'g', or 't' is 



 4 

fixed  during these generations. It does not matter wheth er the base corresponds to 
the consensus base at that position or not as long as it is one of the four bases. 
Yes, this means that natttgcataacaatg n and naaaaaaaaaaaaaaa n have the same 
effect in that positions 2-16 are fixed! A position  with a degenerate code (see 
below) is restricted to the corresponding bases. Fo r instance, a position with a 
‘w’ is restricted to an ‘a’ or ‘t’. A position with  an 'n' is NOT  constrained at 
all.  
 

W = A or T   S = C or G 
R = A or G  Y = C or T 
K = G or T  M = A or C 
B = C, G, or T D = A, G, or T 
H = A, C, or T V = A, C, or G 
N = A, C, G, or T  
 

For Oct4/Sox2 PWM, the following constraints may be  used:  
 

  2 
  1    10 n atttgcataacaatg n 
 11   100 n wnwwgcat nacaawnn 
 

In this example, there are two constraints: 1) from  generations 1 to 10, positions 
2-16 are fixed; 2) from generations 11 to 100, posi tions 2, 4, 5, and 15 are 
restricted to 'a' or 't' and positions 6-9 and 11-1 4 are fixed. No constraints are 
imposed after generations 100. 
 
Example 2: 
 

  2 
  1   10 rrrcwwgyyyrrrcwwgyyy 
 11  100 nnncnngnnnnnncnngnnn 

 
In this example, there are also two constraints: 1)  from generations 1 to 10, 
positions 1, 2, 3, 11, 12, and 13 are constrained t o r, r='a' or 'g', positions 8, 
9, 10, 18, 19, and 20 to y, y='c' or 't', and posit ions 5, 6, 15, and 16 to w, 
w='a' or 't', positions 4, 7, 14, and 17 are fixed;  2) from generations 11 to 100, 
positions 4, 7, 14, and 17 are fixed and no constra ints are imposed on any other 
positions . No constraints are imposed after genera tions 100. 
 
Example 3: 
 

1 
   1   500 catttgcat nnnnnnnn 

 
In this example, the first nine columns (correspond ing to the Oct4 PWM) in the PWM 
are fixed whereas the last eight columns (correspon ding to the Sox2 PWM) are being 
optimized during the first 500 generations. 



 5 

Example 4: 
 

1 
   1   500 nnnnn catttgcataacaatgg nnnnn 

 
In this example, the first and last five columns in  the PWM are being optimized 
whereas the 17 columns in the middle (corresponding  to the Oct4/Sox2 PMW from MEME, 
in this case) are fixed. This example illustrates t he type of constraints one 
might consider when exploring the flanking regions of a binding site. The initial 
PWM for this constraint might look like: 
 

4  27 
1 1 1 1 1 36 73  5  0 35 21   0 100  8 47 51  3 92 94 37 41 23 1 1 1 1 1 
1 1 1 1 1 29  1  0 14  0  9 101   0  9  5  1 41  3  2  5 13 16 1 1 1 1 1 
1 1 1 1 1 18  2  2  0  0 70   0   1  1 17  0 33  1  4  6 27 52 1 1 1 1 1 
1 1 1 1 1 18 25 94 87 66  1   0   0 83 32 49 24  5  1 53 20 10 1 1 1 1 1 

 
 
Programs for processing the gapwm output file 
Three auxiliary programs (avepwm, fitnesspwm, and r ocpwm) are also included in the 
gapwm package. 
 
 avepwm:  averages a set of PWMs in the gapwm outpu t 
 fitnesspwm: computes fitness score for each PWM in  the gapwm output 
 rocpwm: computes the ROC curve for a PWM 
 
Details on how to use the auxiliary programs can be  found in the corresponding 
directories.  


