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DNA microarrays, used to measure the gene expression of
thousands of genes simultaneously, hold promise for future appli-
cation in efficient screening of therapeutic drugs. This will be
aided by the development and population of a database with gene
expression profiles corresponding to biological responses to expo-
sures to known compounds whose toxicological and pathological
endpoints are well characterized. Such databases could then be
interrogated, using profiles corresponding to biological responses
to drugs after developmental or environmental exposures. A pos-
itive correlation with an archived profile could lead to some
knowledge regarding the potential effects of the tested compound
or exposure. We have previously shown that cDNA microarrays
can be used to generate chemical-specific gene expression profiles
that can be distinguished across and within compound classes,
using clustering, simple correlation, or principal component anal-
yses. In this report, we test the hypothesis that knowledge can be
gained regarding the nature of blinded samples, using an initial
training set comprised of gene expression profiles derived from rat
liver exposed to clofibrate, Wyeth 14,643, gemfibrozil, or pheno-
barbital for 24 h or 2 weeks of exposure. Highly discriminant genes
were derived from our database training set using approaches
including linear discriminant analysis (LDA) and genetic algo-
rithm/K-nearest neighbors (GA/KNN). Using these genes in the
analysis of coded liver RNA samples derived from 24-h, 3-day, or
2-week exposures to phenytoin, diethylhexylpthalate, or hexobar-
bital led to successful prediction of whether these samples were
derived from livers of rats exposed to enzyme inducers or to
peroxisome proliferators. This validates our initial hypothesis and
lends credibility to the concept that the further development of a
gene expression database for chemical effects will greatly enhance
the hazard identification processes.

Key Words: toxicogenomics; gene expression database; discrimi-
nant genes; prediction; algorithms; DNA arrays.

Development of novel approaches for high-throughput
screening for potential adverse effects of chemicals is a major
goal in the drug development process and is also now a part of
environmental health research programs. In the past, structural
data, mutagenicity assays, and a host of other endpoints have

been used as measures for prediction of potential adverse
effects of chemical exposure, but with limited success (Ashby,
1994; Ashby and Paton, 1993; Cunninghamet al., 1998; En-
slein et al., 1994; King and Srinivasan, 1996; Klopman and
Rosenkranz 1994). The need for advancing prediction pro-
cesses has made technologies exploiting advances in genomics,
proteomics, and metabonomics promising approaches to
achieve this goal. One strength of these genomic based ap-
proaches is that gene and protein expression analyses, or anal-
yses of metabolites offer multivariate data sets that theoreti-
cally increase the chance of generating unique profiles
associated with chemical exposure and effects, which should in
turn, increase the potential power on which to make predictions
of unknowns. This is in marked contrast to current approaches
to predictive analysis that use structural information dealing with
physical attributes of compounds; these attributes are frequently
relatively low in their numbers of variables corresponding to a
chemical. In this study, we wanted to test whether gene expression
profiling could be used to classify RNA samples derived from
livers of rats exposed to coded compounds.

The genomics approach for predictive toxicology mandates
the successful interrogation of databases populated with gene
expression profiles corresponding to biological responses to
well characterized, known compounds and comparing those
with expression profiles from biological responses to exposures
corresponding to unknown chemicals (Lovett, 2000; Nuwaysir
et al., 1999; Hamadehet al., 2002a). The hypothesis that
underlies this approach is that similarities among profiles will
indicate shared mechanisms of action and/or toxicological re-
sponses among the chemicals being compared. It has been
demonstrated that compounds with similar pharmacological or
toxicological effects produced similar gene expression profiles
following either in vitro (Waring et al., 2001a) or in vivo
(Waring et al., 2001b) exposure conditions. We have previ-
ously demonstrated that gene expression profiles correspond-
ing to livers of rats exposed to either peroxisome proliferators
or an enzyme inducer, clustered based on the mechanism of
toxicant action (Hamadehet al., 2002b). Gene expression
measurements corresponding to thein vitro response of rat
hepatocytes to 15 known compounds revealed that profiles of
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chemicals with similar toxic mechanisms clustered together
(Waring et al., 2001a). Another study demonstrated a strong
correlation between the histopathology, clinical chemistry, and
gene expression profiles corresponding to livers derived from
chemically exposed rats (Waringet al., 2001b).

The use of gene expression profiles for classification and
predictive purposes has been demonstrated in the field of
oncology (Alaiyaet al., 2000; Alizadehet al., 2000; Golubet
al., 1999; Perouet al., 1999; Perouet al., 2000). Tumor
samples from human patients were classified in a blinded
fashion, based on learning data sets that provided knowledge
on the tumor categorization and allowed for objective classi-
fication of the unknown samples. This approach, however, has
not been robustly applied toward the determination of the
identity of biological samples derived fromin vivo chemical
exposure models. A challenging question facing the validity of
the use of transcript profiling to reveal chemically induced
responses in treated animals is whether profiles can be used to
predict the classification of coded samples generated from
exposures to compounds that have not been profiled before.

To test our hypothesis, we investigated, in a blinded study,
gene expression profiles from liver samples of chemically
treated Sprague-Dawley rats. Specific compound identities,
mechanistic classes, or doses of the compounds were coded to
the team members involved in the gene expression profiling
and data interpretation throughout the analysis and prediction
process. In addition, no grouping of samples was provided in
cases in which multiple samples were derived from animals
treated with the same agent. The only information provided
was that the duration of exposure to the agents varied from
24 h, to 3 days, to 2 weeks. The study included 23 coded
samples. The knowledge derived from previous studies about
key discriminator genes that correlated highly with their mech-
anism of action (Bushelet al., unpublished data) was used to
interpret the gene expression profiles of the blinded samples in
order to generate predictions about the identity of these sam-
ples. Using these discriminative genes, we were able to predict
that 13 of the samples were similar to either the class of
enzyme inducers (phenobarbital-like) or to peroxisome prolif-
erators. The remaining 10 compounds were classified as being
not similar to profiles in our database. Upon completion of the
prediction, the sample identifiers were decoded, and we found
that “correct” statements were made regarding 22 of the 23
samples. These results provide strong evidence that the classi-
fication of unknown compounds, based onin vivogene expres-
sion profiles by comparison to a limited known data set, is
possible, and provides validation of the strategy that underlies
a toxico- or pharmacogenomic approach to classification of
agent action.

MATERIALS AND METHODS

Animal treatment and sample collection. Male Sprague-Dawley VAF1

albino rats (CRL:CD(SD) BR; Charles River, Kingston, NY), approximately

5–7 weeks old, were treated with phenytoin (5,5-diphenylhydantoin, CAS #
57–41–0 [612, 616, 618: 300 mg/kg body weight/day for 24 h; 672, 674, 676,
678, 300 mg/kg/day for 2 weeks; 3462, 3464, 3468: 150 mg/kg/day for 2
weeks]), hexobarbital (CAS # 56–29–1 [630, 632, 634: 200 mg/kg/day for
24 h; 688, 690, 692, 694: 200 mg/kg/day for 2 weeks]), or DEHP (di-(2-
ethylhexyl)phthalate, CAS # 117–81–7 [270, 272, 274, 276: 1200 mg/kg/day
for 3 days; 4216, 4218: 1200 mg/kg/day for 2 weeks]). In-life study protocols,
including animal housing, dosage, sacrifice, and tissue harvesting, were iden-
tical to the methods described earlier (Hamadehet al., 2002b). Experiments
were performed according to guidelines established in the NIHGuide for the
Care and Use of Laboratory Animals. On necropsy days, liver portions were
collected in RNase-free tubes and snap frozen in liquid nitrogen. Frozen tissues
were stored at –70°C until processed for RNA extraction. A control sample
was generated by pooling livers of 9 vehicle-treated rats.

RNA isolation and DNA microarray hybridization and analysis.RNA
isolation protocols are identical to those reported earlier in (Hamadehet al.,
2002b). The cDNA Rat Chip software, v1.0, developed in-house at NIEHS,
was used for gene expression profiling experiments. A complete listing of the
genes on this chip is available at the following website: http://dir.niehs.nih.gov/
microarray/chips.htm. cDNA microarray chips were prepared as previously
described. (DeRisiet al., 1996) and are also described in (Hamadehet al.,
2002b). Each RNA pair, from coded control and treated livers, was hybridized
to at least 2 arrays yielding at least 4 measurements on each gene. The raw
pixel intensity images were analyzed using the ArraySuite, v1.3, extensions of
the IPLab image processing software package (Scanalytics, Fairfax, VA)
(Chenet al.,1997). The ratio intensity data from all of the 1700 spots printed
on the NIEHS Rat Chip, v1.0, was used to fit a probability distribution to the
ratio intensity values and estimate the normalization constants that this distri-
bution provides. Genes having normalized ratio intensity values outside of the
95% confidence interval were considered significantly differentially expressed
and deposited into the NIEHS MAPS database (Bushelet al.,2001). For each
exposure condition, a query of the database yielded a list of genes that were
differentially expressed in at least 3 of the 4 replicate measurements. A
calculation using the binomial probability distribution indicated that the prob-
ability of a single gene appearing on this list when there was no real differential
expression is approximately 0.0025.

Training set. The training set used in this study comprised of RNA
samples derived from livers of Sprague-Dawley rats exposed to one of 3
peroxisome proliferators (clofibrate, Wyeth 14,643, gemfibrozil), or an enzyme
inducer (phenobarbital) for 24 h or 2 weeks. A detailed description of this set
is provided in Hamadehet al. (2002b).

Genetic algorithm/K-nearest neighbor (GA/KNN).The GA/KNN method
combines a genetic algorithm (GA) as a searching tool and the K-nearest
neighbor (KNN) approach for nonparametric pattern recognition. The method
not only selects a subset of informative genes that jointly discriminate among
different classes of specimens but also assesses the relative predictive impor-
tance of all the genes for specimen classification. The methodology of GA/
KNN is briefly described below; see Liet al., 2001 and the website http://
dir.niehs.nih.gov/microarray/datamining/ for details. LetGm 5 (g1m, g2m, . . .,
gim, . . ., gqm), wheregim is the log expression ratio of theith gene in themth
specimen;m 5 1,. . .,M (M 5 number of samples in the training set5 27;
9-clofibrate, 9-Wyeth, 9-gemfibrozil, and 9-phenobarbital). In the KNN
method, one computes the Euclidean distance between each specimen, repre-
sented by its vectorGm, and each of the other specimens. Each specimen is
classified according to the class membership of itsk-nearest neighbors. In this
study, we setq 5 30 andk 5 3 and required all of the 3 nearest neighbors to
agree. If the 3 nearest neighbors was not of the same chemical class, the
specimen was considered unclassified. A set ofq (q 5 30) of genes was
considered discriminative when at least 25 of 27 specimens were correctly
classified. A total of 10,000 such subsets of genes were obtained. Genes were
then rank-ordered according to how many times they were selected into these
subsets. The top 100 genes were subsequently used for prediction purposes.

Linear discriminant analysis (LDA). Standard ANOVA models (Kerr and
Churchill 2001), were used to identify genes that have significantly different
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mean expression values between classes of compounds in the training set of
peroxisome proliferators and enzyme inducers (Hamadehet al., 2002b). Any
genes that were identified by ANOVA but had a global standard deviation of
0.3 (log2 units) or higher were excluded. Linear discriminant analysis (LDA)
was then used to test all pairs of genes to identify those that can jointly
discriminate between the classes, again using a minimum variability criterion
to reduce the number of pairs selected. Additional genes that had high simi-
larity (r . 0.95) in their expression profile across known samples were
determined using GeneSpring software (Silicon Genetics, Wood, CA) and
added to this list of discriminatory genes.

Prediction criteria. Genes, found to be highly discriminatory between
peroxisome proliferators and the enzyme inducer in the training set, using LDA
and the 100 top-ranked class discriminatory genes selected from the GA/KNN,
were compared. The intersection of these gene lists was generated and resulted
in a list of 22 genes. For each, the calibrated ratios (log-transformed) were then
averaged across the replicate hybridizations in the training set. Next, a pairwise
Pearson correlation coefficient was calculated for each of the training samples
and each of the coded samples, according to the expression ratios of all 22
genes using JMP software (SAS, Cary NC). Samples were determined to be
similar if r $ 0.8.

RESULTS

Sprague-Dawley rats were treated with a series of com-
pounds, and RNA was isolated, coded, and submitted for
global gene expression analysis in a single-blinded fashion. No
prior knowledge of the pharmacological/toxicological class of
the blinded samples or the relationship of compounds and
sample groupings was provided to the array analysis team.
RNA from blinded samples, corresponding toin vivo, chemi-
cally treated Sprague-Dawley livers, were analyzed according
to the same protocols used for previous studies on the effects
of peroxisome proliferators and phenobarbital (Hamadehet al.,
2002b).

In order to make a prediction on properties of the blinded
samples, we used the gene expression profile data set (Hama-
dehet al., 2002b) corresponding to livers from rats exposed to
4 known compounds (Wyeth 14,643, clofibrate, gemfibrozil,
phenobarbital) as a training set. Multiple approaches were used
to find highly discriminatory/informative genes whose expres-
sion pattern could distinguish RNA samples derived from
livers exposed to different chemicals. LDA and GA/KNN were
useful in revealing single genes or groups of genes that could
separate known samples based on the class of chemical in-
volved in the exposure. Table 1 lists 22 highly informative
genes that clearly exhibited different patterns of expression
between the 2 pharmacological/toxicological classes of com-
pounds, peroxisome proliferators and enzyme inducers.

We found that visualization of the profiles of these discrim-
inative genes was useful for interpretation. For example, the
tripeptidylpeptidase IIgene (UniGene accession # AI111901)
was identified as a highly discriminating gene between perox-
isome proliferators and enzyme inducers, based on LDA, GA/
KNN. We found 5 clones [Mitochondrial 3,2 transenoyl
isomerase (AA965078, AA997009); p55cdc (AA957359);
3-oxoacyl-CoA thiolase(AA964573); Mitochondrial long
chain 3-ketoacyl CoA thiolase(AI070082)] on our Rat Chip

that had a minimum of 95% correlation with the expression
pattern oftripeptidylpeptidase IIacross known samples. The
expression pattern corresponding to this set of genes across
known and blinded samples was plotted (Fig. 1). Visually, the
plot indicated a similarity in the pattern of expression of the
tripeptidylpeptidase II-like genes among known peroxisome
proliferator samples and blinded samples 270, 272, 274, 276,
4216, and 4218 and provided evidence that none of the other
blinded samples were likely to be peroxisome proliferators.

We performed set correlation analysis, which compares 2
sets of multiple variables by pairing each blinded sample with
every known sample using JMP software (SAS, Cary, NC).
The procedure is previously described in detail (Johnson, 1998;
Neter, 1996). Tables 2, 3, and 4 show the correlation coeffi-
cient (r) values for the comparisons. Relatively higher values
of r indicate strong correlation and potential similarity between
the compared samples. Since times of exposure of blinded
samples were furnished to us,r values corresponding to com-
parisons between samples from same times of exposures were
considered for predictive purposes.

Because there were no previously published reports on the
application of microarray analyses to prediction of identity of
coded samples, we had to decide initially on a cutoff to
determine where we would accept that a correlation was truly
strong enough to accurately predict similarity. Based on our

TABLE 1
Genes Determined by LDA and GA/KNN to Discriminate

between Peroxisome Proliferators and Enzyme Inducers

GenBank
accession no. Description

AA818043 Rat cytochrome P450 2C7
AA818339 Rat liver glutathioneS-transferase Ya subunit
AA818412 Rat cytochrome P450 2B2, phenobarbital-inducible
AA818637 Rat transthyretin
AA819345 Rat parvalbumin alpha, calcium binding protein
AA819465 Rat apolipoprotein C-III
AA819595 Rat corticosteroid 11-beta-dehydrogenase
AA858966 Rat cytochrome P450 2C6
AA859478 Rattus norvegicus,Sprague-Dawley Ah receptor
AA899180 Rat NADPH:menadione oxidoreductase
AA924883 Rattus norvegicusCTP:phosphoethanolamine

cytidylyltransferase
AA955106 Rattus norvegicusmitochondrial aldehyde

dehydrogenase 1
AA957359 Rattus norvegicusp55cdc, probable cell division

protein
AA964573 Rat mitochondrial ketoacyl CoA thiolase
AA965078 Rat mitochondrial 3-2trans-enoyl-CoA isomerase
AA997009 ESTs
AA998734 Rat glutathioneS-transferase Yb2
AI043655 SP24 rat secreted phosphoprotein 24
AI044782 Rat complement C3 precursor
AI070028 Rat UDP-glucuronosyltransferase
AI070082 Rat long-chain 3-ketoacyl-CoA thiolase beta-subunit
AI111901 Rattus norvegicustripeptidylpeptidase II
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previous experience, where we had studied the correlation of
animals treated with similar and different compounds (Hama-
dehet al., 2002b), we decided to user $ 0.8 as our cutoff. For
example, blinded samples 4216 and 4218, which were derived
from 2-week exposures, displayed very high correlation (Table

2, 0.8809 and 0.9595, respectively) with the 2-week Wyeth
14,643 gene expression profile, while having no correlation
with the 2-week phenobarbital sample (Table 2, 0.0510, and
–0.0315, respectively) and thus were classified as peroxisome
proliferators (Table 5). Blinded samples 616, 618, 672, 674,

FIG. 1. Statistical and computational tools such as linear discriminant analysis, genetic algorithm/K-nearest neighbor, and single gene ANOVA enabled the
identification of genes/clones (tripeptidylpeptidase II[AI111901];Mitochondrial 3,2 transenoyl isomerase[AA965078], EST [AA997009];p55cdc[AA957359];
3-oxoacyl-CoA thiolase[AA964573];Mitochondrial long chain ketoacyl CoA thiolase[AI070082]) on our chip that had relatively high discriminative properties
between the 2 classes of compounds, namely peroxisome proliferators and enzyme inducers. The plot shows that those genes were upregulated by peroxisome
proliferators only and indicates a visual similarity in the pattern of expression of those genes among known peroxisome proliferator samples and blinded samples
predicted to have similar properties to those samples.
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676, 678, and 688 had high correlation (Tables 2 and 3,r .
0.8) when compared to samples derived from phenobarbital-
treated animals at the respective times of exposure. In addition,
these samples had either negative or low correlation with
samples derived from known peroxisome proliferator-treated
animals, and therefore classified as similar to the enzyme
inducer class of compounds (Table 5). Blinded samples 270,
272, 274, and 276 that were generated from 3-day exposures
were compared to both 24-h and 2-week known samples,
because the time of exposure was not common to any of the
samples in the learning set. The highest correlation was found
between the 3-day coded samples and the known sample de-
rived from the 2-week Wyeth 14,643 treatment (Table 4,r .
0.83). The correlation of the 3-day coded samples with samples
derived from phenobarbital treatments (Table 4,r , 0.2) was
low. Therefore, these samples were also classified as being
similar to peroxisome proliferators (Table 5).

We were unable to make a “positive” call with high confi-
dence on several samples that were not similar to any of the
training samples based on correlation (Table 3,r , 0.8).

Blinded samples 612, 630, 632, and 634 were derived from rats
chemically exposed for 24 h and were compared to 24-h
chemically exposed known samples. While these samples were
negatively correlated with 24-h known peroxisome proliferator
samples, correlation coefficients with the 24-h phenobarbital
sample ranged from 0.33 to 0.73 (Table 3). Similar observa-
tions were noted for the 2-week blinded samples 690, 692, 694,
3462, 3464, and 3468 (Table 2). Because of the negative
correlation between these samples and the known peroxisome
proliferator-derived samples in the learning set, it was con-
cluded that these samples were most likely not similar to
peroxisome proliferators. There was a positive correlation be-
tween these samples and phenobarbital gene expression pro-
files; however, the similarity was not sufficient to make a
certain determination. Therefore we predicted that it was
highly unlikely these coded samples were derived from expo-
sure to peroxisome proliferators, and we documented the pre-
diction of the identity of these unknowns as being not similar
to peroxisome proliferators (Table 5).

In summary, we were successful in correctly making a

TABLE 2
Pairwise Correlation Matrix between Known and Blinded Samples (2-Week) Based on the Expression of Highly Discriminant Genes

Unknown
samples

Known samples

Clofibrate Wyeth 14,643 Gemfibrozil Phenobarbital

672 0.3644 –0.0743 0.0970 0.8886
674 0.3859 –0.0867 0.1417 0.9489
676 0.4045 0.1476 0.2803 0.8670
678 0.4172 0.2009 0.3156 0.8502
688 0.4650 0.1967 0.3632 0.8590
690 0.2333 –0.4689 –0.2955 0.5221
692 0.4098 –0.1080 0.0212 0.7120
694 0.3171 0.4843 0.5496 0.6138

3462 0.2314 –0.2938 –0.0650 0.7294
3464 0.1059 –0.5528 –0.2662 0.5155
3468 0.3786 –0.5044 –0.2708 0.7524
4216 0.2093 0.8949 0.7259 0.0263
4218 0.1250 0.9666 0.7871 –0.0690

Note. Values in italics met the criteria ofr $ 0.8, indicating similarity between known and coded samples.

TABLE 3
Pairwise Correlation Matrix between Known and Blinded Samples (24-h) Based on the Expression of Highly Discriminant Genes

Unknown
samples

Known samples

Clofibrate Wyeth 14,643 Gemfibrozil Phenobarbital

612 0.21 0.09 0.05 0.66
616 –0.06 –0.12 –0.16 0.85
618 0.02 –0.15 0.06 0.93
630 –0.29 –0.41 –0.30 0.67
632 –0.05 0.01 –0.17 0.31
634 0.04 –0.11 0.12 0.75

Note. Values in italics met the criteria ofr $ 0.8, indicating similarity between known and coded samples.
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positive prediction regarding the classes of 12 out of 13 of the
blinded samples. We were also successful at noting that 10
other blinded samples did not belong to the class of peroxisome
proliferators, as evidenced by the lack of similarity in pattern to
compounds in that class. A summary of classifications is listed
in Table 5, which shows the list of blinded samples, our
corresponding prediction, and their actual identity. The results
show that, using the approach described, we had a 92.3%
accuracy rate in class prediction. The animals that had a gene
expression profile similar to phenobarbital were treated with
high-dose phenytoin, a drug in the same class as phenobarbital.
Similarly, the coded samples that were identified as being
similar to samples from clofibrate- and Wyeth 14,643-treated

rats were from animals exposed to diethylhexylphthalate
(DEHP), a known peroxisome proliferator. Finally, the sam-
ples that were noted to be definitely unrelated to peroxisome
proliferators but weakly similar to phenobarbital were from
animals treated with low doses of either phenytoin or hexobar-
bital. The one sample that appeared to be classified incorrectly
was that of a hexobarbital-exposed animal as phenobarbital-
exposed. Further investigation of interanimal variation is being
conducted that might help to explain this inaccuracy.

After the decoding of the samples, we were interested in
visualizing the gene expression profiles of all of the coded
samples in the context of the discriminator genes. Cluster
analysis was performed to visualize the grouping of known

TABLE 4
Pairwise Correlation Matrix between Known and Blinded Samples (3-day) Based on the Expression of Highly Discriminant Genes

Unknown
samples

2-week known samples 24-h known samples

Clofibrate Wyeth 14,643 Gemfibrozil Phenobarbital Clofibrate Wyeth 14,643 Gemfibrozil Phenobarbital

270 0.20 0.87 0.74 0.06 0.81 0.79 0.53 0.20
272 0.13 0.87 0.72 –0.02 0.81 0.83 0.53 0.14
274 0.08 0.89 0.74 –0.05 0.83 0.84 0.62 0.07
276 0.29 0.88 0.77 0.18 0.83 0.74 0.61 0.33

Note. Values in italics met the criteria ofr $ 0.8, indicating similarity between known and coded samples.

TABLE 5
Classification of Blinded Samples Derived from Chemically Treated Rat Livers Based on Predictive Analyses

of Gene Expression Profiles Generated Using cDNA Microarrays

Sample Actual Exposure Prediction Validity of call

612 Phenytoin 300 mg/kg/day 24-h Not peroxisome proliferator =
616 Phenytoin, 300 mg/kg/day 24-h Phenobarbital-like =
618 Phenytoin, 300 mg/kg/day 24-h Phenobarbital-like =

3462 Phenytoin, 150 mg/kg/day 2-week Not peroxisome proliferator =
3464 Phenytoin, 150 mg/kg/day 2-week Not peroxisome proliferator =
3468 Phenytoin, 150 mg/kg/day 2-week Not peroxisome proliferator =
672 Phenytoin, 300 mg/kg/day 2-week Phenobarbital-like =
674 Phenytoin, 300 mg/kg/day 2-week Phenobarbital-like =
676 Phenytoin, 300 mg/kg/day 2-week Phenobarbital-like =
678 Phenytoin, 300 mg/kg/day 2-week Phenobarbital-like =
270 DEHP, 1200 mg/kg/day 3-day Clofibrate/Wyeth-like =
272 DEHP, 1200 mg/kg/day 3-day Clofibrate/Wyeth-like =
274 DEHP, 1200 mg/kg/day 3-day Clofibrate/Wyeth-like =
276 DEHP, 1200 mg/kg/day 3-day Clofibrate/Wyeth-like =

4216 DEHP, 1200 mg/kg/day 2-week Wyeth-like =
4218 DEHP, 1200 mg/kg/day 2-week Wyeth-like =
630 Hexobarbital, 200 mg/kg/day 24-h Not peroxisome proliferator =
632 Hexobarbital, 200 mg/kg/day 24-h Not peroxisome proliferator =
634 Hexobarbital, 200 mg/kg/day 24-h Not peroxisome proliferator =
688 Hexobarbital, 200 mg/kg/day 2-week Phenobarbital-like X
690 Hexobarbital, 200 mg/kg/day 2-week Not peroxisome proliferator =
692 Hexobarbital, 200 mg/kg/day 2 week Not peroxisome proliferator =
694 Hexobarbital, 200 mg/kg/day 2-week Not peroxisome proliferator =

Note.=, valid; X, not valid.
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samples within unknowns according to the expression levels of
the highly discriminant genes. Figure 2 shows the hierarchical
dendrogram that clearly separated known and blinded samples
into 2 major nodes according to their major mechanistic
classes. One node (Fig. 2, node I) contained all of the animals
exposed to the barbiturates phenobarbital, phenytoin, and hex-
obarbital. Upon further inspection of this node, one can see that
all of the high-dose phenytoin animals (616, 618, 674,672,676)
were tightly clustered with the phenobarbital, and that animals
treated with low-dose or short-time phenytoin or hexobarbital
were clustered slightly apart. The second major node (Fig. 2,
node II) contained all of the animals that had been exposed to
peroxisome proliferators.

DISCUSSION

This study illustrates the successful classification of coded
RNA samples derived from the livers of chemically exposed
animals. A unique feature of this study is that the classification
was done in a blinded fashion. This provided a challenge,
because we had to determine cutoffs for assignment of identity

(r . 0.8) in the absence of being able to learn from the model
we were developing. However, the success of our predictions
demonstrates that if one can reduce the dimension of their data
set with various statistical models, then it is possible to perform
predictions for unknown compounds that are similar to com-
pounds present in a database. We are now using the data set to
develop more formal and rigorous models for prediction (i.e.,
neural networks) to make this task less arbitrary in future
studies.

It is of interest to note that samples classified as phenobar-
bital-like (616, 618, 672, 674, 676, 678) were actually derived
from rats exposed to high doses of phenytoin (5,5-diphenylhy-
dantoin). Phenytoin and phenobarbital belong to the same
pharmacological class of compounds that act as anticonvul-
sants with enzyme-inductive properties (Brodie 1992; Fitzsim-
monset al.,1990; Liu and Delgado 1995; Patsalos and Duncan
1993; Pichardet al.,1990; Rivaet al.,1996), which attributes
validity to the prediction made on the identity of these samples.
Our findings corroborate numerous previous studies that have
reported on the proximity of responses to phenytoin and phe-
nobarbital in different biological models (Brodie 1992;

FIG. 2. Clustering diagram of samples in the study. The algorithm (Eisenet al.,1998) was used to cluster the gene expression profiles for known and coded
compounds for the set of derived discriminatory genes used in this study. The diagram illustrates that all of the compounds separate into 2 distinct nodes. Node
I represents samples that are related to phenobarbital and Node II represents samples classified as peroxisome proliferators. Red indicates genes that are induced
by treatment and green indicates repression of expression by treatment.

238 HAMADEH ET AL.



Fitzsimmonset al., 1990). Likewise, coded samples that were
correctly classified as similar to clofibrate or Wyeth 14,643
corresponded to rat livers exposed to DEHP (di-(2-ethyl-
hexyl)phthalate). DEHP belongs to the peroxisome proliferator
class of compounds (Lakeet al., 1986; Mitchellet al., 1985)
and produces a multitude of effects that are shared by other
peroxisome proliferators such as clofibrate and Wyeth 14,643
(Craneet al., 1990; Lakeet al., 1984).

We provided positive classification rather than the exact
identity of the coded samples since no gene expression profiles
corresponding to DEHP or phenytoin were present in our
learning set/database. However, we were successful in classi-
fying coded samples according to their pharmacological/toxi-
cological effects or modes of action. A prediction on the
classification of samples 630, 632, 634, 690, 692, 694, 3462,
3464, and 3468 was made by the definite assessment that none
of these samples were similar to peroxisome proliferator com-
pounds. The first 6 of these samples were derived from animals
treated with hexobarbital, a compound that is structurally re-
lated to phenobarbital but is not carcinogenic in rodents and
elicits a less potent enzyme-inducing response (Nimset al.,
1987). The last 3 samples corresponded to a 2-week exposure
to a low dose of phenytoin and were negatively correlated with
known peroxisome proliferator samples, but did not meet our
stringent criteria to be classified as potential phenobarbital
samples. If our database had contained expression profiles of
rat livers exposed to low-dose phenobarbital, positive identifi-
cation of those samples may have been possible. This high-
lights the importance of building multiple doses and time
points into studies designated to populate a database developed
for the purpose of screening and prediction.

Another challenge for this study was the lack of information
regarding biological replicates among the blinded set. In our
previous studies (Hamadehet al., 2002b) we utilized multiple
animals for each dose and time group to determine what gene
expression changes occurred robustly in all exposed animals
vs. those that reflected variation between animals. In this
prediction study, we did not know which samples represented
biological replicates. This lack of replicate knowledge contrib-
uted to the difficulty for making our predictions. For example,
we classified one of the hexobarbital-treated blinded samples
(688) as being weakly similar to phenobarbital and did not
positively classify sample 612 (phenytoin exposure) as similar
to phenobarbital (Table 5). These calls might be due to inter-
animal variation where a relatively higher- or lower-amplitude
response in gene expression was evident in those particular
samples, respectively, since their biological replicates were
classified correctly.

Inherent in this data set are a variety of time- and dose-
dependent, as well as independent, changes that might be ex-
ploited in further studies. By studying samples treated with phe-
nytoin at the low and high dose, we found numerous genes that
appeared to respond in a dose-dependent manner.GST Yb2
(AA998732), carboxylesterase precursor(AI070587), cyto-

chrome p450 2C6(AA858966), palmitoyl-protein thioesterase
(AA818995) andcytochrome p450 2B2(AA818412) were among
genes that were apparently induced in a dose-dependent fashion
by phenytoin. Likewise, the expression levels ofdiazepam-bind-
ing inhibitor (AA925794), parvalbumin (AA819345), growth
hormone receptor(AA819745),p450 1A2(AA924594), andcy-
tochrome p450 2C7(AA818043) were repressed in a dose-depen-
dent manner as a result of phenytoin exposure. If, in additional
studies, these genes continue to appear to have dose- and time-
independent responses, they may provide valuable identifiers for
classifying compounds at unique dose or time points.

There were several challenges we encountered in this study.
Ideally, the information housed in a database should be large so
that one can interrogate this large sum of information with a
relatively small query, to derive more knowledge from the
database. However, we were challenged to interrogate a data-
base with a large data set that outweighed the relevant database
set that we could query against. Our query of 24 gene expres-
sion profiles, potentially belonging to 24 different chemicals,
exceeded the database set of 4 chemicals that was used for the
purpose of this study. Our learning set contained gene expres-
sion profiles corresponding to 24 h or 2 weeks of chemical
exposure, however, 4 of the blinded samples were generated in
rats exposed for 3 days. This required us to reduce the dimen-
sion of the data set (Bushelet al., unpublished data) and to find
time-independent, highly discriminative genes that helped to
separate different compounds, so that we could query 24-h and
2-week data with 3-day profiles (Table 1). This investigation
demonstrates the first example of a successful query of a
database with gene expression profiles to predict classification
of unknown compounds of this number.

In summary, this work illustrates the successful prediction of
properties of blinded samples using gene expression profiling.
It demonstrates that large gene expression profile databases
will be able to be successfully queried to help classify un-
known compounds from exposed tissues. It also highlights the
importance for beginning, even at this early stage, to develop
analysis models for these types of data. Our analyses informed
us on important considerations for our experimental study
designs in the future. It is now foreseeable that in the future,
gene expression profiling or other high density genomics anal-
yses will prove valuable in the screening of compounds for
mechanistic classification in a high-throughput fashion. In turn,
this will ultimately better our understanding in selecting chem-
icals for advanced stages of target testing in commercial set-
tings, and allow the advancement of predictive information on
uncharacterized human health hazards.
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