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Background on Perchlorate 

� Contaminant found in groundwater, drinking water & soils ­
mainly in southwest US 
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Primary source industrial & military - perchlorate used as 
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Concern about effects of perchlorate on the thyroid (known to 
inhibit thyroid’s ability to absorb iodine from the blood) 
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Background on Perchlorate 

Contaminant found in groundwater, drinking water & soils ­
mainly in southwest US 

Primary source industrial & military - perchlorate used as 
oxidizing agent (e.g., in rocket fuel) 

Concern about effects of perchlorate on the thyroid (known to 
inhibit thyroid’s ability to absorb iodine from the blood) 

EPA conducted extensive risk assessment - NAS review of 
health effects (recommended new reference dose) 
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Two Generation Rodent Study (Argus, 1999) 

Male rats were exposed to ammonium perchlorate through 
drinking water 
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Two Generation Rodent Study (Argus, 1999) 

Male rats were exposed to ammonium perchlorate through 
drinking water 

30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day 
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through mating period & until sacrifice at 21-22 weeks 
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Two Generation Rodent Study (Argus, 1999) 

Male rats were exposed to ammonium perchlorate through 
drinking water 

30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day 

Male rats in P1 generation exposed 70+ days before mating, 
through mating period & until sacrifice at 21-22 weeks 

F1 generation treated similarly, with additional exposure 
during gestation & lactation 
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Male rats in P1 generation exposed 70+ days before mating, 
through mating period & until sacrifice at 21-22 weeks 
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during gestation & lactation 
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Two Generation Rodent Study (Argus, 1999) 

Male rats were exposed to ammonium perchlorate through 
drinking water 

30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day 

Male rats in P1 generation exposed 70+ days before mating, 
through mating period & until sacrifice at 21-22 weeks 

F1 generation treated similarly, with additional exposure 
during gestation & lactation 

At 19 weeks for F1 rats, thyroid tissues examined histologically 

2/30 male rats in 30 mg/kg/day dose group had thyroid 
follicular cell adenomas, with one of these rats having two 
adenomas. 
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Analyzing the Perchlorate data

Frequentist analysis: comparing 0/30 tumors in control rats 
with 2/30 tumors in the high dose group - non-significant 
(Fisher’s exact test p-value=0.49) 

http:p-value=0.49
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Frequentist analysis: comparing 0/30 tumors in control rats 
with 2/30 tumors in the high dose group - non-significant 
(Fisher’s exact test p-value=0.49) 

Ignores the prior knowledge that thyroid follicular cell 
adenomas are very rare in 19 week rats 
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Frequentist analysis

Analyzing the Perchlorate data 

: comparing 0/30 tumors in control rats 
with 2/30 tumors in the high dose group - non-significant 
(Fisher’s exact test p-value=0.49) 

Ignores the prior knowledge that thyroid follicular cell 
adenomas are very rare in 19 week rats 

The National Toxicology Program (NTP) routinely collects 
tumor incidence data for control rats in two year studies. 

http:p-value=0.49
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Analyzing the Perchlorate data 

Frequentist analysis: comparing 0/30 tumors in control rats 
with 2/30 tumors in the high dose group - non-significant 
(Fisher’s exact test p-value=0.49) 

Ignores the prior knowledge that thyroid follicular cell 
adenomas are very rare in 19 week rats 

The National Toxicology Program (NTP) routinely collects 
tumor incidence data for control rats in two year studies. 

Would our conclusion change if we included information from 
the NTP data base? 

http:p-value=0.49
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Some prior information 

In 67 recent NTP studies, 38/3419 = 1.1% of male rats 
developed thyroid follicular cell adenomas by death in a two 
year study. 
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Some prior information

In 67 recent NTP studies, 38/3419 = 1.1% of male rats 
developed thyroid follicular cell adenomas by death in a two 
year study. 

Results from Portier et al. (1986) suggest probability of 
developing thyroid follicular cell adenoma increases in 
proportion to age4.78
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In 67 recent NTP studies, 38/3419 = 1.1% of male rats 
developed thyroid follicular cell adenomas by death in a two 
year study. 

Results from Portier et al. (1986) suggest probability of 
developing thyroid follicular cell adenoma increases in 

4.78proportion to age

Average survival time in NTP study for control male rat is 
95.2 weeks 
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In 67 recent NTP studies, 38/3419 = 1.1% of male rats 
developed thyroid follicular cell adenomas by death in a two 
year study. 

Some prior information 

Results from Portier et al. (1986) suggest probability of 
developing thyroid follicular cell adenoma increases in 

4.78proportion to age

Average survival time in NTP study for control male rat is 
95.2 weeks 

Suggests that the ratio of probability of thyroid follicular cell 
adenomas at 19 weeks to the lifetime probability in a 2-year 
study is (19/95.2)4.78 = 0.0005 

http:19/95.2)4.78
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Some prior information 

In 67 recent NTP studies, 38/3419 = 1.1% of male rats 
developed thyroid follicular cell adenomas by death in a two 
year study. 

Results from Portier et al. (1986) suggest probability of 
developing thyroid follicular cell adenoma increases in 

4.78proportion to age

Average survival time in NTP study for control male rat is 
95.2 weeks 

Suggests that the ratio of probability of thyroid follicular cell 
adenomas at 19 weeks to the lifetime probability in a 2-year 
study is (19/95.2)4.78 = 0.0005 

Question: How do we incorporate this information in analysis? 
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Frequentist vs Bayes 

Suppose we are interested in a parameter α (e.g., probability 
of thyroid FCA by 19 weeks in control rats) 
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Frequentist vs Bayes 

Suppose we are interested in a parameter α (e.g., probability 
of thyroid FCA by 19 weeks in control rats) 

Frequentists would typically rely on the MLE, which would be 
α = 0/30 = 0 in the perchlorate example e
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Frequentist vs Bayes 

Suppose we are interested in a parameter α (e.g., probability 
of thyroid FCA by 19 weeks in control rats) 

Frequentists would typically rely on the MLE, which would be 
α = 0/30 = 0 in the perchlorate example e
Bayesians instead rely on the posterior distribution of α 
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Frequentist vs Bayes 

Suppose we are interested in a parameter α (e.g., probability 
of thyroid FCA by 19 weeks in control rats) 

Frequentists would typically rely on the MLE, which would be 
α = 0/30 = 0 in the perchlorate example e
Bayesians instead rely on the posterior distribution of α 

Obtained in updating one’s prior distribution with the 
likelihood for the data. 
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Bayes’ Rule 

Let γ(α) = prior distribution of parameter α
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Bayes’ Rule 

Let γ(α) = prior distribution of parameter α 

Let L(y |α) = likelihood of data y given parameter α 
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Bayes’ Rule 

Let γ(α) = prior distribution of parameter α 

Let L(y |α) = likelihood of data y given parameter α 

Then, the posterior is defined as: 

γ(α) L(y |α)
γ(α | y) = ,f 

γ(α) L(y | α)dα 

which is the prior × the likelihood divided by a normalizing 
constant 
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Bayes’ Rule 

Let γ(α) = prior distribution of parameter α 

Let L(y |α) = likelihood of data y given parameter α 

Then, the posterior is defined as: 

γ(α) L(y |α)
γ(α | y) = ,f 

γ(α) L(y | α)dα 

which is the prior × the likelihood divided by a normalizing 
constant 

The posterior, γ(α | y), represents the state of knowledge 
about α after updating the prior, γ(α), with the information in 
the data, y. 
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Bayesian Updating 

As an example of Bayesian updating, let α=probability of 
preterm birth (PTB) 



�

�

Outline 
Illustrative example - Perchlorate & thyroid tumors 

Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 

Bayesian Updating 

As an example of Bayesian updating, let α=probability of 
preterm birth (PTB) 

Typical choice of prior for α is the beta(a, b) distribution 
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Bayesian Updating 

As an example of Bayesian updating, let α=probability of 
preterm birth (PTB) 

Typical choice of prior for α is the beta(a, b) distribution 

a, b=hyperparameters characterizing uncertainty in α before 
incorporating information in data from current study 
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Bayesian Updating 

As an example of Bayesian updating, let α=probability of 
preterm birth (PTB) 

Typical choice of prior for α is the beta(a, b) distribution 

a, b=hyperparameters characterizing uncertainty in α before 
incorporating information in data from current study 

a/(a + b)=prior expectation for α & a + b=prior sample size 
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As an example of Bayesian updating, let α=probability of 
preterm birth (PTB) 

Bayesian Updating 

Typical choice of prior for α is the beta(a, b) distribution 

a, b=hyperparameters characterizing uncertainty in α before 
incorporating information in data from current study 

a/(a + b)=prior expectation for α & a + b=prior sample size 

beta(1, 1) corresponds to uniform distribution - has as much 
information as two subjects (one with PTB & one without) 
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α=probability of preterm birth
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Preterm Birth Example 

α=probability of preterm birth 

Consider two different priors: (1) a uniform prior expressing 
ignorance; and (2) a beta(10,90) prior. 
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Preterm Birth Example 

α=probability of preterm birth 

Consider two different priors: (1) a uniform prior expressing 
ignorance; and (2) a beta(10,90) prior. 

The beta(10,90) prior implies a 95% prior probability of 
α E [0.05, 0.17] (wide range of plausible values for probability 
preterm birth) 
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Preterm Birth Example 

α=probability of preterm birth 

Consider two different priors: (1) a uniform prior expressing 
ignorance; and (2) a beta(10,90) prior. 

The beta(10,90) prior implies a 95% prior probability of 
α E [0.05, 0.17] (wide range of plausible values for probability 
preterm birth) 

We collect data for 100 women & observe 7/100 preterm 
births. 
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Updating the beta prior 

The beta prior is conjugate to the binomial likelihood
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    Updating the beta prior

The beta prior is conjugate to the binomial likelihood 

For conjugate priors, the posterior γ(α | y) is available 
analytically and has the same form as the prior 
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Updating the beta prior 

The beta prior is conjugate to the binomial likelihood 

For conjugate priors, the posterior γ(α | y) is available 
analytically and has the same form as the prior 

Let yi = 1 if woman i has a preterm birth and yi = 0 
otherwise, with Pr(yi = 1) = α 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 



�

�

�

�

Outline 
Illustrative example - Perchlorate & thyroid tumors 

Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Updating the beta prior 

The beta prior is conjugate to the binomial likelihood 

For conjugate priors, the posterior γ(α | y) is available 
analytically and has the same form as the prior 

Let yi = 1 if woman i has a preterm birth and yi = 0 
otherwise, with Pr(yi = 1) = α 

Likelihood is Bernoulli: L(y | α) = 
I

αyi (1 − α)1−yi 
i 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 
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Updating the beta prior 

The beta prior is conjugate to the binomial likelihood 

For conjugate priors, the posterior γ(α | y) is available 
analytically and has the same form as the prior 

Let yi = 1 if woman i has a preterm birth and yi = 0 
otherwise, with Pr(yi = 1) = α 

Likelihood is Bernoulli: L(y | α) = 
I

αyi (1 − α)1−yi 
i 

The posterior distribution of α is then 
� L L � 

γ(α | y) = beta a + yi , b + (1 − yi ) . 
i i 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 
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Returning to the Perchlorate Example 

Let α = ' × p, α=prob tumor in 19 weeks, '=prob tumor in 
lifetime & p=proportion of tumors developing by 19 weeks 
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Let α = ' × p, α=prob tumor in 19 weeks, '=prob tumor in 
lifetime & p=proportion of tumors developing by 19 weeks 

We choose beta(38, 3381) prior for probability of developing 
thyroid FCA for a control male rat in a two-year study (') 
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Returning to the Perchlorate Example 

Let α = ' × p, α=prob tumor in 19 weeks, '=prob tumor in 
lifetime & p=proportion of tumors developing by 19 weeks 

We choose beta(38, 3381) prior for probability of developing 
thyroid FCA for a control male rat in a two-year study (') 

Based on the 38/(38 + 3381) rats observed with these tumors 
in NTP studies 
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Returning to the Perchlorate Example 

Let α = ' × p, α=prob tumor in 19 weeks, '=prob tumor in 
lifetime & p=proportion of tumors developing by 19 weeks 

We choose beta(38, 3381) prior for probability of developing 
thyroid FCA for a control male rat in a two-year study (') 

Based on the 38/(38 + 3381) rats observed with these tumors 
in NTP studies 

We choose beta(0.11, 2.6) prior for ratio: 

probability of developing tumor by 19 weeks 
p = . 

probability of developing tumor in two year study 

Centered on 0.0005 with 95% probability of falling within 
[0.0000,0.379] 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 
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Conclusions from Perchlorate Example 

α = ' × p=probability of developing thyroid FCA by 19 weeks 
for control male rat 
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Conclusions from Perchlorate Example 

α = ' × p=probability of developing thyroid FCA by 19 weeks 
for control male rat 

We update priors for ' and p with data from the Argus 
(1999) study to obtain posterior distribution for α. 
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Conclusions from Perchlorate Example 

α = ' × p=probability of developing thyroid FCA by 19 weeks 
for control male rat 

We update priors for ' and p with data from the Argus 
(1999) study to obtain posterior distribution for α. 

The posterior mean of α is 1/100, 000 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 



�

�

�

�

Outline 
Illustrative example - Perchlorate & thyroid tumors 

Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Conclusions from Perchlorate Example 

α = ' × p=probability of developing thyroid FCA by 19 weeks 
for control male rat 

We update priors for ' and p with data from the Argus 
(1999) study to obtain posterior distribution for α. 

The posterior mean of α is 1/100, 000 

How likely it is to observe 2 or more rats out of 30 with 
tumors under the null hypothesis of no effect of perchlorate? 
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Conclusions from Perchlorate Example 

α = ' × p=probability of developing thyroid FCA by 19 weeks 
for control male rat 

We update priors for ' and p with data from the Argus 
(1999) study to obtain posterior distribution for α. 

The posterior mean of α is 1/100, 000 

How likely it is to observe 2 or more rats out of 30 with 
tumors under the null hypothesis of no effect of perchlorate? 

This probability is < 1/100, 000 - data support causal effect 
of perchlorate on increased thyroid tumor incidence 
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More Complex Models 

Posterior calculation for preterm birth example relied on 
conjugate prior 
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More Complex Models 

Posterior calculation for preterm birth example relied on 
conjugate prior 

Posterior calculation for perchlorate example relied on numeric 
integration - easy for two parameters 
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More Complex Models 

Posterior calculation for preterm birth example relied on 
conjugate prior 

Posterior calculation for perchlorate example relied on numeric 
integration - easy for two parameters 

For epidemiologic analyses (e.g., logistic regression, survival 
analysis), conjugate priors not available & dimension high 
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Posterior calculation for preterm birth example relied on 

More Complex Models 

conjugate prior 

Posterior calculation for perchlorate example relied on numeric 
integration - easy for two parameters 

For epidemiologic analyses (e.g., logistic regression, survival 
analysis), conjugate priors not available & dimension high 

In such settings, there are multiple parameters in α and one 
needs to compute the joint posterior: 

γ(α) L(y |α)
γ(α | y) = .f 

γ(α) L(y | α)dα 
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Example: Bayesian Logistic Regression 

Logistic regression model: 

'logit Pr(yi = 1 | xi , () = x (,i 

with xi = (1, xi2, . . . , xip)
' a vector of predictors & 

( = (ρ1, . . . , ρp )
' coefficients for these predictors 
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Example: Bayesian Logistic Regression 

Logistic regression model: 

' logit Pr(yi = 1 | xi , () = xi (, 

with xi = (1, xi2, . . . , xip)
' a vector of predictors & 

( = (ρ1, . . . , ρp )
' coefficients for these predictors 

A Bayesian specification of the model is completed with a 
prior for the coefficients, γ(() = Np((0, I). 
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Example: Bayesian Logistic Regression 

Logistic regression model: 

' logit Pr(yi = 1 | xi , () = xi (, 

with xi = (1, xi2, . . . , xip)
' a vector of predictors & 

( = (ρ1, . . . , ρp )
' coefficients for these predictors 

A Bayesian specification of the model is completed with a 
prior for the coefficients, γ(() = Np((0, I). 

Here, (0 is one’s best guess at the coefficient values prior to 
observing the data from the current study 
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Example: Bayesian Logistic Regression 

Logistic regression model: 

' logit Pr(yi = 1 | xi , () = xi (, 

with xi = (1, xi2, . . . , xip)
' a vector of predictors & 

( = (ρ1, . . . , ρp )
' coefficients for these predictors 

A Bayesian specification of the model is completed with a 
prior for the coefficients, γ(() = Np((0, I). 

Here, (0 is one’s best guess at the coefficient values prior to 
observing the data from the current study 

I=covariance matrix quantifying uncertainty in this guess 
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Some Different Possibilities for the Prior 

I. Informative Prior 

Review literature & choose a prior to be centered on previous 
estimates of coefficients. 
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Some Different Possibilities for the Prior 

I. Informative Prior 

Review literature & choose a prior to be centered on previous 
estimates of coefficients. 

In the absence of previous estimates, choose a subjective value 
synthesizing knowledge of the literature 
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Some Different Possibilities for the Prior 

I. Informative Prior 

Review literature & choose a prior to be centered on previous 
estimates of coefficients. 

In the absence of previous estimates, choose a subjective value 
synthesizing knowledge of the literature 

Prior variance chosen so that a 90 or 95% prior interval 
contains a wide range of plausible values 
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Some Different Possibilities for the Prior 

I. Informative Prior 

Review literature & choose a prior to be centered on previous 
estimates of coefficients. 

In the absence of previous estimates, choose a subjective value 
synthesizing knowledge of the literature 

Prior variance chosen so that a 90 or 95% prior interval 
contains a wide range of plausible values 

Useful to choose informative priors for intercept and 
confounding coefficients, as there is typically substantial 
information about these coefficients 
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Some Possible Priors (continued) 

II. Shrinkage Priors 

Choose a prior centered on zero with modest variance 
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Some Possible Priors (continued) 

II. Shrinkage Priors 

Choose a prior centered on zero with modest variance 

When little information is available about a parameter, results 
in shrinkage towards zero 
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Some Possible Priors (continued) 

II. Shrinkage Priors 

Choose a prior centered on zero with modest variance 

When little information is available about a parameter, results 
in shrinkage towards zero 

Avoids unstable estimates - particularly problematic in high 
dimensions & for correlated predictors. 
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Some Possible Priors (continued) 

II. Shrinkage Priors 

Choose a prior centered on zero with modest variance 

When little information is available about a parameter, results 
in shrinkage towards zero 

Avoids unstable estimates - particularly problematic in high 
dimensions & for correlated predictors. 

As more information becomes available that the parameter 
(e.g., the exposure odds ratio) is non-zero, the likelihood will 
dominate. 
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Some Possible Priors (continued)    

III. Non-Informative Priors 

Choose a prior that has high variance or is flat in some sense 
to express ignorance about the parameter value 
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Some Possible Priors (continued) 

III. Non-Informative Priors 

Choose a prior that has high variance or is flat in some sense 
to express ignorance about the parameter value 

Often yields similar results to maximum likelihood - what’s 
the point? 
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Some Possible Priors (continued) 

III. Non-Informative Priors 

Choose a prior that has high variance or is flat in some sense 
to express ignorance about the parameter value 

Often yields similar results to maximum likelihood - what’s 
the point? 

No prior is truly non-informative - flat or high variance priors 
assign most of their probability outside a plausible range for 
the parameter values. 
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Some Possible Priors (continued) 

III. Non-Informative Priors 

Choose a prior that has high variance or is flat in some sense 
to express ignorance about the parameter value 

Often yields similar results to maximum likelihood - what’s 
the point?
 

No prior is truly non-informative - flat or high variance priors
 
assign most of their probability outside a plausible range for
 
the parameter values.
 

Can lead to poor results when insufficient information 
available about a given parameter in the current data set ­
typically, the case when many predictors are collected. 
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Bayes Logistic Regression (continued) 

Posterior distribution: 

Np((; (0, I) 
In 

L(yi ; xi , ()l=1γ(( | y) = ,f 
Np ((; (0, I) 

In 
L(yi ; xi , ()d(l=1 

where L(yi ; xi , () is the likelihood contribution for individual i 
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Bayes Logistic Regression (continued) 

Posterior distribution: 

Np((; (0, I) 
In 

L(yi ; xi , ()l=1γ(( | y) = ,f 
Np ((; (0, I) 

In 
L(yi ; xi , ()d(l=1 

where L(yi ; xi , () is the likelihood contribution for individual i 

Note that we can write the numerator in this expression in 
closed form 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 



�

�

�

Outline 
Illustrative example - Perchlorate & thyroid tumors 

Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Bayes Logistic Regression (continued) 

Posterior distribution: 

Np((; (0, I) 
In 

L(yi ; xi , ()l=1γ(( | y) = ,f 
Np ((; (0, I) 

In 
L(yi ; xi , ()d(l=1 

where L(yi ; xi , () is the likelihood contribution for individual i 

Note that we can write the numerator in this expression in 
closed form 

However, the denominator involves a nasty high-dimensional 
integral that has no analytic solution. 
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Calculating the Posterior Distribution 

To calculate the posterior, one can potentially rely on a large 
sample approximation 
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Calculating the Posterior Distribution 

To calculate the posterior, one can potentially rely on a large 
sample approximation 

As n - o, the posterior is normally distributed centered on 
the maximum likelihood estimate 
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Calculating the Posterior Distribution 

To calculate the posterior, one can potentially rely on a large 
sample approximation 

As n - o, the posterior is normally distributed centered on 
the maximum likelihood estimate 

Impact of the prior decreases as the sample size increases in 
general 
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Calculating the Posterior Distribution 

To calculate the posterior, one can potentially rely on a large 
sample approximation 

As n - o, the posterior is normally distributed centered on 
the maximum likelihood estimate 

Impact of the prior decreases as the sample size increases in 
general 

However, even for moderate to large samples, asymptotic 
normal approximation may be inaccurate 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 



�

�

�

�

�

Outline 
Illustrative example - Perchlorate & thyroid tumors 

Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Calculating the Posterior Distribution 

To calculate the posterior, one can potentially rely on a large 
sample approximation 

As n - o, the posterior is normally distributed centered on 
the maximum likelihood estimate 

Impact of the prior decreases as the sample size increases in 
general 

However, even for moderate to large samples, asymptotic 
normal approximation may be inaccurate 

In logistic regression for rare outcomes or rare exposure 
categories, posterior can be highly skewed 
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MCMC - Basic Idea 

Markov chain Monte Carlo (MCMC) provides an approach for 
generating samples from the posterior distribution 
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MCMC - Basic Idea 

Markov chain Monte Carlo (MCMC) provides an approach for 
generating samples from the posterior distribution 

This does not give us an approximation to γ(α | y) directly 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 



�

�

�

Outline 
Illustrative example - Perchlorate & thyroid tumors 

Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

MCMC - Basic Idea 

Markov chain Monte Carlo (MCMC) provides an approach for 
generating samples from the posterior distribution 

This does not give us an approximation to γ(α | y) directly 

However, from these samples we can obtain summaries of the 
posterior distribution for α 
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MCMC - Basic Idea 

Markov chain Monte Carlo (MCMC) provides an approach for 
generating samples from the posterior distribution 

This does not give us an approximation to γ(α | y) directly 

However, from these samples we can obtain summaries of the 
posterior distribution for α 

Summaries of exact posterior distributions of g(α), for any 
functional g(·), can also be obtained. 
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MCMC - Basic Idea 

Markov chain Monte Carlo (MCMC) provides an approach for 
generating samples from the posterior distribution 

This does not give us an approximation to γ(α | y) directly 

However, from these samples we can obtain summaries of the 
posterior distribution for α 

Summaries of exact posterior distributions of g(α), for any 
functional g(·), can also be obtained. 

For example, if α is the log-odds ratio, then we could choose 
g(α) = exp(α) to obtain the odds ratio 
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How does MCMC work? 

Let αt = (α1
t , . . . , αp

t ) denote the value of the p × 1 vector of 
parameters at iteration t. 
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Markov chain Monte Carlo 

How does MCMC work? 

Let αt = (α1
t , . . . , αp

t ) denote the value of the p × 1 vector of 
parameters at iteration t. 

α0 = initial value used to start the chain (shouldn’t be 
sensitive) 
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Markov chain Monte Carlo 

How does MCMC work? 

Let αt = (αt , . . . , αt ) denote the value of the p × 1 vector of 1 p

parameters at iteration t.
 

α0 = initial value used to start the chain (shouldn’t be
 
sensitive)
 

MCMC generates αt from a distribution that depends on the
 
data & potentially on αt−1, but not on α1, . . . , αt−2 .
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Markov chain Monte Carlo 

How does MCMC work? 

Let αt = (α1
t , . . . , αp

t ) denote the value of the p × 1 vector of 
parameters at iteration t.
 

α0 = initial value used to start the chain (shouldn’t be
 
sensitive)
 

MCMC generates αt from a distribution that depends on the
 
data & potentially on αt−1, but not on α1, . . . , αt−2 .
 

This results in a Markov chain with stationary distribution
 
γ(α | y) under some conditions on the sampling distribution
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Different flavors of MCMC 

The most commonly used MCMC algorithms are:
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Different flavors of MCMC 

The most commonly used MCMC algorithms are: 
� Metropolis sampling (Metropolis et al., 1953) 
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Different flavors of MCMC 

The most commonly used MCMC algorithms are: 
Metropolis sampling (Metropolis et al., 1953) 
Metropolis-Hastings (MH) (Hastings, 1970) 
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Different flavors of MCMC 

The most commonly used MCMC algorithms are: 
Metropolis sampling (Metropolis et al., 1953) 
Metropolis-Hastings (MH) (Hastings, 1970) 
Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 
1990) 
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Different flavors of MCMC 

The most commonly used MCMC algorithms are: 
Metropolis sampling (Metropolis et al., 1953)
 
Metropolis-Hastings (MH) (Hastings, 1970)
 
Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith,
 
1990)
 

Easy overview of Gibbs - Casella & George (1992, The 
American Statistician, 46, 167-174) 
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Different flavors of MCMC 

The most commonly used MCMC algorithms are: 
Metropolis sampling (Metropolis et al., 1953)
 
Metropolis-Hastings (MH) (Hastings, 1970)
 
Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith,
 
1990)
 

Easy overview of Gibbs - Casella & George (1992, The 
American Statistician, 46, 167-174) 

Easy overview of MH - Chib & Greenberg (1995, The 
American Statistician) 
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Gibbs Sampling 

Start with initial value α0 = (α1
0, . . . , αp

0) 
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Gibbs Sampling 

Start with initial value α0 = (α1
0, . . . , αp

0) 
For iterations t = 1, . . . , T , 
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Gibbs Sampling 

Start with initial value α0 = (α1
0, . . . , αp

0) 
For iterations t = 1, . . . , T , 

1. Sample Bt from the conditional posterior distribution 1 

= Bt−1 = Bt−1�(B1 | B2 2 , . . . , Bp p , y) 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Gibbs Sampling 

Start with initial value α0 = (α1
0, . . . , αp

0) 
For iterations t = 1, . . . , T , 

1. Sample Bt from the conditional posterior distribution 1 

= Bt−1 = Bt−1(B1 | B2 2 , . . . , Bp p , y) 

2. Sample Bt from the conditional posterior distribution 2 

(B2 | B1 = Bt , B3 = Bt−1, . . . , Bp = Bt−1 , y)1 3 p 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Gibbs Sampling 

Start with initial value α0 = (α1
0, . . . , αp

0) 
For iterations t = 1, . . . , T , 

1. Sample Bt from the conditional posterior distribution 1 

= Bt−1 = Bt−1(B1 | B2 2 , . . . , Bp p , y) 

2. Sample Bt from the conditional posterior distribution 2 

(B2 | B1 = Bt , B3 = Bt−1, . . . , Bp = Bt−1 , y)1 3 p 

3. Similarly, sample B3
t , . . . , Bp

t from the conditional posterior 
distributions given current values of other parameters. 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Gibbs Sampling (continued) 

Under mild regularity conditions, samples converge to 
stationary distribution γ(α | y) 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Gibbs Sampling (continued) 

Under mild regularity conditions, samples converge to 
stationary distribution γ(α | y) 

At the start of the sampling, the samples are not from the 
posterior distribution γ(α | y). 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Gibbs Sampling (continued) 

Under mild regularity conditions, samples converge to
 
stationary distribution γ(α | y)
 

At the start of the sampling, the samples are not from the
 
posterior distribution γ(α | y).
 

It is necessary to discard the initial samples as a burn-in to 
allow convergence 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Gibbs Sampling (continued) 

Under mild regularity conditions, samples converge to
 
stationary distribution γ(α | y)
 

At the start of the sampling, the samples are not from the
 
posterior distribution γ(α | y).
 

It is necessary to discard the initial samples as a burn-in to
 
allow convergence
 

In simple models such as logistic regression, convergence 
typically occurs quickly & burn-in of 100 iterations should be 
sufficient (to be conservative SAS uses 2,000 as default) 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Example - DDE & Preterm Birth 

Scientific interest: Association between DDE exposure &
 
preterm birth adjusting for possible confounding variables
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Example - DDE & Preterm Birth 

Scientific interest: Association between DDE exposure & 
preterm birth adjusting for possible confounding variables 

Data from US Collaborative Perinatal Project (CPP) - n = 
2380 children out of which 361 were born preterm 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Example - DDE & Preterm Birth 

Scientific interest: Association between DDE exposure & 
preterm birth adjusting for possible confounding variables 

Data from US Collaborative Perinatal Project (CPP) - n = 
2380 children out of which 361 were born preterm 

Analysis: Bayesian analysis using a probit model: 

Pr(yi = 1 | xi , ρ) = �(ρ1 + ρ2ddei + ρ3zi1 + · · · + ρ7zi5). 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Example - DDE & Preterm Birth 

Scientific interest: Association between DDE exposure & 
preterm birth adjusting for possible confounding variables 

Data from US Collaborative Perinatal Project (CPP) - n = 
2380 children out of which 361 were born preterm 

Analysis: Bayesian analysis using a probit model: 

Pr(yi = 1 | xi , ρ) = �(ρ1 + ρ2ddei + ρ3zi1 + · · · + ρ7zi5). 

Chose normal prior with mean 0 and variance 4. 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Example - DDE & Preterm Birth 

Scientific interest: Association between DDE exposure & 
preterm birth adjusting for possible confounding variables 

Data from US Collaborative Perinatal Project (CPP) - n = 
2380 children out of which 361 were born preterm 

Analysis: Bayesian analysis using a probit model: 

Pr(yi = 1 | xi , ρ) = �(ρ1 + ρ2ddei + ρ3zi1 + · · · + ρ7zi5). 

Chose normal prior with mean 0 and variance 4. 

Probit model is similar to logistic regression, but with different 
link 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Gibbs Sampling output for preterm birth example 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Estimated Posterior Density 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Some MCMC Terminology 

Convergence: initial drift in the samples towards a stationary 
distribution 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Some MCMC Terminology 

Convergence: initial drift in the samples towards a stationary 
distribution 

Burn-in: samples at start of the chain that are discarded to 
allow convergence 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Some MCMC Terminology 

Convergence: initial drift in the samples towards a stationary 
distribution 

Burn-in: samples at start of the chain that are discarded to 
allow convergence 

Slow mixing: tendency for high autocorrelation in the samples. 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Some MCMC Terminology 

Convergence: initial drift in the samples towards a stationary 
distribution 

Burn-in: samples at start of the chain that are discarded to 
allow convergence 

Slow mixing: tendency for high autocorrelation in the samples. 

Thinning: practice of collecting every kth iteration to reduce 
autocorrelation 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Some MCMC Terminology 

Convergence: initial drift in the samples towards a stationary 
distribution 

Burn-in: samples at start of the chain that are discarded to 
allow convergence 

Slow mixing: tendency for high autocorrelation in the samples. 

Thinning: practice of collecting every kth iteration to reduce 
autocorrelation 

Trace plot: plot of sampled values of a parameter vs iteration 
# 
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Example - trace plot with poor mixing 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Poor mixing Gibbs sampler 

Exhibits “snaking” behavior in trace plot with cyclic local 
trends in the mean 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Poor mixing Gibbs sampler 

Exhibits “snaking” behavior in trace plot with cyclic local 
trends in the mean 

Poor mixing in the Gibbs sampler caused by high posterior 
correlation in the parameters 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Poor mixing Gibbs sampler 

Exhibits “snaking” behavior in trace plot with cyclic local 
trends in the mean 

Poor mixing in the Gibbs sampler caused by high posterior 
correlation in the parameters 

Decreases efficiency & many more samples need to be 
collected to maintain low Monte Carlo error in posterior 
summaries 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Poor mixing Gibbs sampler 

Exhibits “snaking” behavior in trace plot with cyclic local 
trends in the mean 

Poor mixing in the Gibbs sampler caused by high posterior 
correlation in the parameters 

Decreases efficiency & many more samples need to be 
collected to maintain low Monte Carlo error in posterior 
summaries 

For very poor mixing chain, may even need millions of 
iterations. 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Poor mixing Gibbs sampler 

Exhibits “snaking” behavior in trace plot with cyclic local 
trends in the mean 

Poor mixing in the Gibbs sampler caused by high posterior 
correlation in the parameters 

Decreases efficiency & many more samples need to be 
collected to maintain low Monte Carlo error in posterior 
summaries 

For very poor mixing chain, may even need millions of 
iterations. 

Routinely examine trace plots! 
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Example - trace plot with good mixing 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to summarize results from the MCMC chain? 

Posterior mean: estimated by average of samples collected 
after discarding burn-in 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to summarize results from the MCMC chain? 

Posterior mean: estimated by average of samples collected 
after discarding burn-in 

Posterior mean provides alternative to maximum likelihood 
estimate as a single summary. 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to summarize results from the MCMC chain? 

Posterior mean: estimated by average of samples collected 
after discarding burn-in 

Posterior mean provides alternative to maximum likelihood 
estimate as a single summary. 

As a Bayesian alternative to the confidence interval, one can 
use a credible interval 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to summarize results from the MCMC chain? 

Posterior mean: estimated by average of samples collected 
after discarding burn-in 

Posterior mean provides alternative to maximum likelihood 
estimate as a single summary. 

As a Bayesian alternative to the confidence interval, one can 
use a credible interval 

The 100(1 − a)% credible interval ranges from the a/2 to 
1 − a/2 empirical percentiles of the collected samples 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to summarize results from the MCMC chain? 

Posterior mean: estimated by average of samples collected 
after discarding burn-in 

Posterior mean provides alternative to maximum likelihood 
estimate as a single summary. 

As a Bayesian alternative to the confidence interval, one can 
use a credible interval 

The 100(1 − a)% credible interval ranges from the a/2 to 
1 − a/2 empirical percentiles of the collected samples 

Credible intervals can be calculated for functionals (e.g., odds 
ratios) by first applying the function to each MCMC sample 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Posterior probabilities 

Often interest focuses on the weight of evidence of H1 : αj > 0 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Posterior probabilities 

Often interest focuses on the weight of evidence of H1 : αj > 0 

The posterior probability of H1 can be calculated easily from 
the MCMC output as simply the proportion of collected 
samples having αj > 0. 

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data 



�

�

�

Outline 
Illustrative example - Perchlorate & thyroid tumors 

Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Posterior probabilities 

Often interest focuses on the weight of evidence of H1 : αj > 0 

The posterior probability of H1 can be calculated easily from 
the MCMC output as simply the proportion of collected 
samples having αj > 0. 

A high value (e.g., greater than 0.95) suggests strong 
evidence in favor of H1 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Marginal posterior density estimation 

Summary statistics such as the mean, median, standard 
deviation, etc provide an incomplete picture 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Marginal posterior density estimation 

Summary statistics such as the mean, median, standard 
deviation, etc provide an incomplete picture 

Since we have many samples from the posterior, we can 
accurately estimate the exact posterior density 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

Marginal posterior density estimation 

Summary statistics such as the mean, median, standard 
deviation, etc provide an incomplete picture 

Since we have many samples from the posterior, we can 
accurately estimate the exact posterior density 

This can be done using a kernel-smoothed density estimation 
procedure applied to the samples 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to get started? 

It is not necessary to understand MCMC theory to implement 
Bayesian analyses 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to get started? 

It is not necessary to understand MCMC theory to implement 
Bayesian analyses 

WinBUGS is a general software package for implementing 
MCMC in a very broad variety of models 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to get started? 

It is not necessary to understand MCMC theory to implement 
Bayesian analyses 

WinBUGS is a general software package for implementing 
MCMC in a very broad variety of models 

WinBUGS can accommodate hierarchical models, missing 
data, spatial correlation, etc (Rich will illustrate) 
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Introduction to Bayesian Statistics 
Bayesian Logistic Regression 

Markov chain Monte Carlo 

How to get started? 

It is not necessary to understand MCMC theory to implement 
Bayesian analyses 

WinBUGS is a general software package for implementing 
MCMC in a very broad variety of models 

WinBUGS can accommodate hierarchical models, missing 
data, spatial correlation, etc (Rich will illustrate) 

SAS also has several new Bayes Procs available (Amy will 
illustrate) 
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