
Appendix I: Performance of Models in Simulated Datasets
 

To assess these models (P1, P2, SP1, and SP2) and their ability to estimate effects in a 

variety of scenarios, we examined their performance in simulated data. Data were simulated 

from the logistic model: 

logitPr(Yi = 1 |xi1, . . . , xi10) = β0 + β1xi1 + . . . + β10xi10, 

under a variety of scenarios for the true effect of β1 . . . β10. Datasets were simulated under 

the assumption of no correlation between covariates and assuming a 90% pairwise correlation 

between all covariates. Datasets of 250 observations were simulated 500 times and analyzed 

using a maximum likelihood logistic model as well as a logistic regression with the priors 

specified in Table A1.1. Gibbs sampling algorithms to analyze each model were programmed 

and run in Matlab for 10,000 iterations. The initial 3000 iterations were discarded as a burn-

in. 

Figure A1.1 shows the mean squared error (MSE) of datasets simulated assuming all 

βj = 0 (top row), and β1 = 0.05, β2 = 0.1, β3 = 0.15 . . . β10 = 0.5 (bottom row). When none 

of the coefficients have an effect the two semi-parametric models outperform the parametric 

hierarchical models (and the ML model). The decreased MSE of models SP1 and SP2 occurs 

because during most iterations of the Gibbs sampler, all coefficients are clustered together. 

Model SP2 has slightly lower MSE than model SP1 because it gives increased probability 

(π) to the true value of the βj . When the data are orthogonal, little difference is observed 

between ML, P1 and P2 (i.e., the data tend to swamp out the prior knowledge); however, 

when the data are highly correlated model P1 has lower MSE than ML and model P2 has 

slightly lower MSE than model P1. The improved performance of the hierarchical models 

when data are highly correlated occurs because the high correlation implies less information 

is available to estimate the effects (similar to simply having less data in the orthogonal case), 

and prior knowledge is more important in estimating coefficients. 

The bottom row of Figure A1 shows simulation results when the true effect of each 

coefficient is different. In these simulations, the true effects of the coefficients do not differ 

by much. Models SP1 and SP2 again have lower MSE than any of the other models, because 
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the slight gain in bias (by occasionally assuming these coefficients have the same effect), is
 

offset by the increase in precision. However, when the true effect is not zero Model SP2 

tends to have slightly worse performance as the true effect moves further from the null. If 

the difference between the coefficients was larger, the semi-parametric models would perform 

somewhat worse than the two parametric models. 

Figure A1.2 presents simulations in which only β1 has an effect (β1 = 0.5 in the top row 

and β1 = 1.0 in the bottom row). When β1 = 0.5, the models SP1 and SP2 perform somewhat 

worse than the other models in estimating β1 (however they still perform better for the other 

9 coefficients). The decreased performance results from the relatively small size of the effect, 

which the semi-parametric models are more likely to cluster with the other coefficients (which 

have no effect). When the effect is larger (β1 = 1.0), the four hierarchical models perform 

similarly. With highly correlated data the semi-parametric models can perform better when 

the effect is small (because these models bias the coefficient by clustering it with the other 

coefficients, but substantially reduce the variability), but worse when the effect is larger 

(because the bias introduced through clustering becomes more severe). 

Figure A1.3 presents simulations in which the coefficients fall into clusters having an 

effect of β1 . . . β5 = 0.5 or having no effect (β6 . . . β10). When the data are orthogonal, all 

estimation methods produce similar MSE, with a slight improvement of the two SP models. 

When data are highly correlated, as would be expected, the two semi-parametric models have 

lowest MSE. Model SP1 has lower MSE for β1 . . . β5 where the true effect is not null, while 

model SP2 has lower MSE for β6 . . . β10 where the true effect is null (since model SP2 gives 

additional prior probability to this hypothesis). Model P1 and P2 have roughly equivalent 

MSE in this setting. 

Figure A1.4 presents simulations in which the first coefficient has no effect while β2 . . . β10 = 

1.0. When the predictors are not correlated (top panel), model SP2 routinely outperforms 
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the other models since it is capable of clustering the last nine coefficients together while
 

allowing the first (truly null) coefficient to fall into the zero cluster. Model SP1 performs 

well for coefficients β2 . . . β10, but has an increased MSE for β1. The decreased performance 

for this coefficient is due to model SP1 grouping β1 with β2 . . . β10 too often. Over the 500 

simulated datasets, we observed false positive rates for β1 of 5%, 4%, 4%, 7%, 2% for the ML, 

P1, P2, SP1 and SP2 models, respectively. The bottom panel in figure A4 illustrates the 

effect of high correlation among the predictors. For β2 . . . β10, model SP1 performs well gen

erally clustering these coefficients to improve MSE. The 2 semi-parametric models perform 

poorly in estimating β1. We observed false positive rates for β1 of 7%, 3%, 2%, 33%, 28% for 

the ML, P1, P2, SP1 and SP2 models, respectively. On the other hand, models SP1 and 

SP2 were far more likely to correctly flag any of the other 9 coefficients as significant (0.18, 

0.17, 0.15, 0.60, 0.58 for ML, P1, P2, SP1, and SP2 respectively). 

Figure A1.5 compares the performance of models P1, P2, SP1 and SP2 where β1 . . . β5 = 

1.0 and β6 . . . β10 = −1.0. Models P1 and P2 specify β1 . . . β5 ∼ N(1.0, φ2
1) and β6 . . . β10 ∼ 

N(−1.0, φ2
2). For model P1, φ2

1 = φ2
2 = 0.5 while for model P2 these coefficients are random. 

The coefficients are given non-parametric specification in models SP1 and SP2, centered on a 

N(0, .5) distribution. With no correlation, the models SP1 and SP2 are able to discover the 

clustered structure of the data and outperform models P1 and P2. With high correlation, 

however, models P1 and P2 perform far better than models SP1 and SP2. This set of 

simulations, while informative, is also potentially misleading. It compares two correctly 

specified models (models P1 and P2) with two incorrectly specified models (SP1 and SP2). 

The improved performance of models P1 and P2 is not surprising in that regard. 

It is important to note that such simulations are inherently artificial and the relative 

performance of the models (assessed through MSE) could vary depending on the prior speci

fication. For instance, in each of the simulations we present, the hierarchical models outper
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form the ML model. However, it is well known that this need not always be the case: if we
 

had chosen a prior that was radically different from the true value of βj , the ML model could 

have smaller MSE than any of the hierarchical models. Additionally, a squared error loss 

function is only one of many ways to assess the performance of these models and we make no 

guarantee that the performance of these models will be the same under different loss func

tions. Finally, it is important to note that these considerations are inherently frequentist. 

From a Bayesian perspective the expected loss is averaged over the prior distribution to find 

an estimator that yields the smallest Bayes risk. When a squared error loss function is used, 

that estimator is the posterior mean. This framework more naturally places the emphasis 

on specifying a prior distribution that most closely corresponds to prior knowledge. 
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Table A1.1. Hierarchical models used in analysis of simulated data in Figures A1.1-A1.5. 

P1 P2 
βj ∼ N(0, 1)	 βj ∼ N(0, φ2) 

φ2 ∼ IG(3, 2) 

SP1	 SP2 
βj ∼ D βj ∼ D 
D ∼ DP (λD0) D ∼ DP (λD0) 

D0 ≡ N(0, φ2) D0 ≡ πδ0 + (1 − π)N(0, φ2) 
λ ∼ G(1, 1) λ ∼ G(1, 1) 

φ2 ∼ IG(3, 2) φ2 ∼ IG(3, 2) 
π ∼ beta(1, 1) 
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Appendix II: WinBUGS Code for Parametric Models
 

This appendix provides a generic template of WinBUGS code that can be used to imple

ment models P1 and P2. We present code that can be used to analyze a hypothetical dataset 

with a binary outcome, y, and 7 dichotomous covariates x1 . . . x7. Information on how to 

read data into WinBUGS can be found in the WinBUGS manual. We use the following data: 

list( x1=c(0,1,0,0,0,0,0,0), x2=c(0,0,1,0,0,0,0,0), x3=c(0,0,0,1,0,0,0,0), 

x4=c(0,0,0,0,1,0,0,0), x5=c(0,0,0,0,0,1,0,0), x6=c(0,0,0,0,0,0,1,0), x7=c(0,0,0,0,0,0,0,1), 

n = c(100,100,100,100,100,100,100,100), y = c(10, 8, 11, 12, 9, 13, 11, 14), N = 8, J=7) 

The data are in aggregate form (i.e., there 100 people who are unexposed to x1 . . . x7 

and 10 of them have the outcome. There are 100 people who are exposed to only x1 and 8 

of them have the outcome, etc). The following Winbugs code can be used to analyze this 

dataset using model P1: 

Winbugs Code for Model P1 

model {
 

for( i in 1 : N ) {
 

y[i] ∼ dbin(p[i],n[i])
 

logit(p[i]) ← alpha + b[1]*x1[i]+b[2]*x2[i]+b[3]*x3[i]
 

+ b[4]*x4[i]+b[5]*x5[i]+b[6]*x6[i]+b[7]*x7[i] } 

for(j in 1:J) { 

b[j] ∼ dnorm(0,.3) } 

alpha ∼ dnorm(0.0,0.01) } 

Note that dnorm(a,b) is a normal distribution with mean a and variance 1/b. We ran 

the SB model for 50,000 iterations and excluded the first 10,000 as a burn-in. The results 
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from this model are given in the table below:
 

Coefficient Posterior Mean Standard Deviation 
b[1] -0.27 0.47 
b[2] 0.08 0.43 
b[3] 0.18 0.43 
b[4] -0.15 0.46 
b[5] 0.27 0.42 
b[6] 0.08 0.43 
b[7] 0.36 0.41 

WinBUGS Code for Model P2 

Code for model P2, is only slightly more complex than code for model P1: 

model {
 

for( i in 1 : N ) {
 

y[i] ∼ dbin(p[i],n[i])
 

logit(p[i]) ← alpha + b[1]*x1[i]+b[2]*x2[i]+b[3]*x3[i]
 

+ b[4]*x4[i]+b[5]*x5[i]+b[6]*x6[i]+b[7]*x7[i] } 

for(j in 1:J) { 

b[j] ∼ dnorm(0,phi) } 

alpha ∼ dnorm(0.0,0.01) 

phi ∼ dgamma(0.3,1)} 

Because WinBUGS specifies the normal distribution in terms of precision (the inverse of 

variance), in model P2 a gamma prior is placed on precision parameter (which is equivalent 

to our earlier approach that placed an inverse gamma prior on the variance). In model P2, 

dgamma is a Gamma(α, β) distribution with mean= αβ and variance=αβ2 . So our above 

specification gives a prior mean of 0.3 and prior variance of 0.3. 

12
 

http:dnorm(0.0,0.01


We ran the code for model P2 on the data above for 50,000 iterations of the Gibbs 

sampler, discarding the initial 10,000 as a burn-in. The results are given in the table below: 

Coefficient Posterior Mean Standard Deviation 
b[1] -0.24 0.36 
b[2] 0.03 0.34 
b[3] 0.11 0.33 
b[4] -0.14 0.35 
b[5] 0.19 0.33 
b[6] 0.03 0.34 
b[7] 0.27 0.33 
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Appendix III: Alternative analysis of Agricultural Health Study example
 

The Agricultural Health Study (AHS) enrolled farmers who applied for pesticide licenses 

in Iowa or North Carolina between 1993 and 1997 and has been described in detail elsewhere. 

Kirrane et al. recently examined the association between pesticide exposure and retinal 

degeneration among the wives of AHS farmers. Spouses of farmers filled out a questionnaire 

with information on their medical and pesticide use history. We analyzed the same data 

(31,173 women, 281 of whom experienced retinal degeneration) and controlled for the same 

covariates, but limit our analysis to the 6 fungicides. These chemicals exhibited a wide range 

of correlation up to 0.33. The literature on effects of fungicides on retinal degeneration is 

limited, amounting to one study which we used to inform our prior. Table A3.1 shows the 4 

hierarchical models used for the analysis. Gibbs sampling algorithms were programmed in 

Matlab and run for 60,000 iterations with the initial 5,000 excluded as a burn-in period. 

To illustrate the four hierarchical models, we present representations of the prior dis

tributions for the effect, β1, of benomyl in figure A3.1. Because the prior distributions for 

models P2, SP1 and SP2 depend on random variables we evaluate the them at the posterior 

mean of all other random variables (φ2 for model P2; φ2 , λ, and β2 . . . β6 for model SP1; 

φ2 , λ, β2 . . . β6, and π for model SP2). The prior distribution for model P1 is determined 

by our prior belief that any fungicide has an effect on retinal degeneration of OR=1.8 and 

that we are 95% certain the effect lies between OR=0.8 and OR=4.0 (φ2 = 0.16). The 

prior distribution for β1 in model P2 is more complicated since φ2 is random. A larger 

than expected amount of variability is observed among the fungicide effects, leading to a 

posterior mean of φ2 = 0.29. Thus the prior distribution for β1 evaluated at φ2 = 0.29 is 

less concentrated around the prior mean, which will lead to less shrinkage of effects toward 

OR=1.8. As indicated earlier, the prior distribution for model SP1 is a mixture of a normal 

distribution with a mean OR=1.8 and posterior estimate of φ2 = 0.21 and a set of point 
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masses at the posterior estimates of β2 . . . β6. The mean posterior value of λ = 1.8 (the data 

provide more evidence in favor of normally distributed effects than indicated by the prior), 

implies that with probability 26%, β1 is distributed as N(0.6, 0.21) and with probability 

15%, β1 is assigned the value of one of β2 . . . β6. The prior distribution for model SP2 is 

similar to model SP1, except for a large point mass at 0. The posterior mean of π = 0.40 

and λ = 1.59 imply that β1 is distributed according to N(.6, 0.16) with probability 14% or 

set equal to β2 . . . β9 with probability 9% or set equal to 0 with probability 40%. 

The results of the models are presented in Table A3.2. Figure A3.2 shows the posterior 

distributions of the effect of benomyl. Model P1 estimated a slightly elevated effect (OR=1.4, 

95% CI (0.7, 2.6)). Because of the variability of the fungicide effects relative to their prior 

specification, model P2 had a larger posterior φ2 than that of model P1 and therefore less 

shrinkage (OR=1.2, 95% CI (0.5, 2.8)) toward the prior mean than model P1. In model 

SP1, the coefficient for benomyl was the least likely of any effect to be clustered with any 

of the other coefficients (between 5% and 6% of the time). The relatively modest amount 

of clustering for benomyl resulted in posterior estimates similar the models P1 and P2. 

However, other coefficients (notably, Ziram) had greatly increased precision as a result of 

being clustered with the other effects as much as 20% of the time. The distribution of β1 from 

model SP2 has a large spike at 0 which is the posterior probability that β1 = 0 (p=0.57). 

The most likely non-null effect in model SP2 is very similar to the effects estimated by the 

other three models (OR=1.4). This indicates some uncertainty over whether benomyl is 

associated with retinal degeneration. 
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Table A3.1: Hierarchical models used to analyze Agricultural Health Study data on fungi

cides and retinal degeneration in wives of pesticide applicators, North Carolina and Iowa, 

1993-1997. 

P1	 P2 
βj ∼ N(0.6, 0.16)	 βj ∼ N(0.6, φ2

1) 
φ2

1 ∼ IG(2.03, 0.16) 

SP1	 SP2 
βj ∼ D βj ∼ D 
D ∼ DP (λD0) D ∼ DP (λD0) 

D0 ≡ N(0.45, φ2) D0 ≡ πδ0 + (1 − π)N(0.45, φ2) 
λ ∼ G(1, 1) λ ∼ G(1, 1) 

φ2 ∼ IG(2.03, 0.16) φ2 ∼ IG(2.03, 0.16) 
π ∼ beta(0.2, 1.8) 
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Figure A3.2: Posterior distributions for the effect of benomyl using four hierarchical models 

used to analyze the Agricultural Health Study data. 

solid line: SP2 

dotted line: SP1 

dashed line: P2 

dash-dot line: P1 
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