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Center Approach to Mixture

Characterization
B

1 Perspectives

o1 evidence-based perspective

m focus on vehicular emissions and near-roadway impacts, as accumulating
evidence supports a major role for traffic emissions

o biologically-based perspective

m assess the role of reactive oxygen species (ROS) and other oxidants as a group
with potential biological activity relevant to oxidative stress-mediated responses

o1 environmental management perspective

m use state-of-the-art methods of source apportionment to better understand roles of
groups of agents co-emitted from specific sources and their transformation
products

o1 empirical perspective

m apply data-based approaches to sort species and group them according to their
associations with health endpoints of interest.




Variety of Goals in Multi-Pollutant Research
7

0 “...estimating the total health effect associated with
the exposure to multiple pollutants.”

[Dominici et al, Epidemiology, 2010]

0 “...to model complex air pollution mixture effects
more explicitly to gain better insight into the
features of an air pollution mix that are most toxic.”

[Vedal & Kaufman, Am J Resp Crit Care Med, 2011]



Conceptual Issues

S =
0 Clarify conceptual issues, statistical issues follow
o1 Covariation
o Interaction
o Joint effects
o1 Disentangling effects

[Klein et al, manuscript in preparation]



Covariation
N

1 Many pollutants covary temporally and spatially as
a result of co-emission or common atmospheric
processes

0 Typically, this is why multi-pollutant models have
been used — to estimate effects of a single pollutant
controlling for effects of others



Atlanta Example
Single- and Multi-Pollutant Models: Respiratory ED Visits
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[Tolbert et al, J Exp Sci Environ Epidemiol, 2007]



Covariation (cont’d)

S =
0 But:
o1 Too tightly correlated? Power problem
o1 Differing levels of measurement error across pollutants?

o1 Surrogate issue — if etiologically important pollutant not
measured or poorly measured, other pollutant may act
as surrogate



Atlanta Example
Single- and Multi-Pollutant Models: CVD ED Visits
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Covariation (cont’d)
—

1 Source apportionment
21 Grouping co-emissions by common source

o Step forward and backward?
w Helpful for environmental management
= Dimension reduction / less correlated

m But:
= added layer of uncertainty
u etiologic agent could be in multiple sources

= if one source is associated with outcome, will want to know which

component(s) important




Atlanta Example

PM, . Source-Resolved Results: CVD ED Visits (RR per IQR and CI)
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[Sarnat et al, EHP, 2008]



Interaction
N

1 Knowledge of separate effects of individual
pollutants may be insufficient to predict effects of
combination

0 Statistical interaction — model-dependent, may
reflect biological or chemical interaction

1 Not necessarily simultaneous exposure — e.g., ozone
may potentiate effects of PM



Interaction (cont’d)
N

1 Challenges:
= Power

2 Unmanageable number of potential combinations (all
2-way, 3-way,...n-way)
® Multiple comparisons problem
® How prioritize?

m A priori selection based on co-occurrence, biological
considerations, prior evidence

= Dimension reduction/model stabilization techniques
= e.g., LASSO/ridge regression



Joint Effects
B

7 What is total effect of mixture?
1 One approach: from multi-pollutant model, add

parameter estimates, exponentiate to get RR for
simultaneous increase of one unit of each pollutant

=1 May include interaction terms

21 Choice of units critical to weighting



Joint Effects (cont’d)
N

o1 Alternative approach:

“One atmosphere” paradigm, estimate risk
associated with unit increment of this mixture

(or other mixtures)

1 Leads to question of what is driving association, how
does risk vary by composition of mixture?



Disentangling Effects
—

11 Deconstruct from joint effect: which components are
driving association?

1 How group components?
o1 Measurement method: e.g., PM2.5, ultrafines, OC
o1 Source apportionment

o1 Mode of action: e.g., ROS, other mechanistically-
relevant property groups

=1 Empirically-based techniques: e.g., PCA, CART, random
forests, supervised or unsupervised clustering...



Multi-Pollutant Approaches to
Air Pollution Mixtures

0 Ultimately getting closer to true complexity of
etiologic picture involved in real-world exposures

71 But need clarity in goals and thoughtful approaches
to minimize vulnerability to issues of data mining,
multiple comparisons and other pitfalls...
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